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Abstract

Compressing neural networks without retraining is vital for deployment at scale.
We study calibration-free compression through the lens of projection geometry:
structured pruning is an axis-aligned projection, whereas model folding performs a
low-rank projection via weight clustering. We formalize both as orthogonal opera-
tors and show that, within a rank distance of one, folding provably yields smaller
parameter reconstruction error, and under mild smoothness assumptions, smaller
functional perturbations than pruning. At scale, we evaluate >1°000 checkpoints
spanning ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on CIFAR-10
and ImageNet-1K, covering diverse training hyperparameters (optimizers, learning
rates, augmentations, regularization, sharpness-aware training), as well as multi-
ple LLaMA-family 60M parameter models trained on C4. We show that folding
typically achieves higher post-compression accuracy, with the largest gains at
moderate-high compression. The gap narrows and occasionally reverses at specific
training setups. Our results position folding as a geometry-aware, calibration-free
alternative to pruning that is often superior in practice and principled in theory.

1 Introduction

Neural network compression is critical for deploying models in resource-constrained environments.
Common approaches include quantization, which reduces the precision of weights and activations, and
knowledge distillation, which transfers information from a large teacher model to a smaller student
model. In this work, we focus on the class of calibration-free post-training structured compression
methods that optimize the model architecture itself without access to training data. Among these,
the most widely used is magnitude-based pruning, which prunes tensor elements according to their
magnitudes, using them as a proxy for their contribution to model accuracy [Han et al., 2015 [Mishra
et al.l 2021} [Lu et al., [2023| |Ding et al., 2024, Bambhaniya et al., 2024]. When combined with
fine-tuning or a lightweight BatchNorm reset [[Saikumar and Varghese, [2025]], this approach achieves
significant compression rates with negligible accuracy loss [Kurtic et al.} 2022 |[Sanh et al.| [2020].
In contrast, the recently introduced model folding clusters similar weights and ties them together,
providing an approximation of the original network [Wang et al.l 2025]]. Both pruning and folding
reduce parameter count but differ fundamentally: pruning removes weights entirely, while folding
preserves them in merged representations.

In this work, we develop a unified theoretical and empirical framework to compare pruning and
folding through the lens of orthogonal projections in parameter space. We show that both compression
methods can be viewed as projections onto lower-dimensional subspaces, but with crucial differences



in geometry: pruning corresponds to axis-aligned coordinate projections, while folding projects onto
cluster-structured subspaces that retain directional information.

At a high level, both pruning and folding compress the weights of a model. We show that for any
pruned solution there exists a folded alternative that is almost as small—using one extra component
in the compressed representation—yet is strictly closer to the original weights (smaller Frobenius
norm), which in turn bounds the change in the network function. Intuitively, folding merges weight
vectors with similar directions rather than zeroing coordinates, so the compressed model stays closer
in behavior to the initial network.

Empirically, we perform a comprehensive calibration-free study over >1’000 checkpoints spanning
CNNs and ViTs on CIFAR-10 and ImageNet-1K, trained under diverse hyperparameter choices
(optimizers, learning rates, augmentation, regularization, sharpness-aware training). We also train and
process 18 LLaMA-family models with 60M parameters on C4, by varying learning rates, warmup
lengths, and weight decay strength. After compression and also followed by lightweight and full
fine-tuning, folding typically attains higher post-compression accuracy, with the largest gains at
moderate to high compression. The margin narrows, and can occasionally reverse, at very low
compression or under specific training setups, but the overall trend is consistent with our theoretical
analysis. Our projection-based perspective opens new directions for designing compression methods
that explicitly optimize for functional closeness. This paper makes the following contributions:

* We introduce a unified projection framework that casts pruning and folding as orthogonal
projections onto, respectively, axis-aligned and cluster-structured subspaces. We prove that
at a compression rank difference of one, folding achieves smaller parameter reconstruction
error and tighter function-perturbation bounds under mild smoothness assumptions.

* A large-scale evaluation across >1°000 checkpoints and diverse hyperparameters, covering
CNNs and ViTs on CIFAR-10 and ImageNet- 1K, as well as LLaMA-60M on C4. In addition,
we use post-compression fine-tuning through lightweight LayerNorm reset for ViTs, or
full-fine-tuning to show that the strong performance of folding is preserved in these settings.

* We show that folding is a geometry-aware alternative that is often superior in practice, with
clearly identified regimes (e.g., moderate—high compression) where its advantage is most
pronounced, and corner cases where the gap narrows.

Due to space constraints, a detailed discussion of related work is provided in Appendix [F|

2 Unified Framework for Pruning and Folding

2.1 Preliminaries and Definitions

We consider a neural network with input z € R?. We assume ReLLU activations and normalization
layers (e.g., BatchNorm or LayerNorm) are present.

To develop the theoretical framework, we focus on compressing a single layer at a time. This layer
has p inputs and m outputs with its parameters collected in matrix W € R™*P. A row w(i) of
‘W is denoted as the ith parameter vector with individual weights w(4, j). Since all other network
parameters are treated as fixed, the network function can be expressed as f(x; W), which is trained
to minimize a loss function L(W).

We assume that the loss function L is Lipschitz continuous; that is, there exists a constant x > 0 such
that
|[L(W1) — L(W32)| < k||W1 — Wl €))]

for all admissible parameter matrices W and Ws. The Frobenius norm of a matrix is defined as
[Allr = /220 5 lass

2, that is, the square root of the sum of the squares of its entries, or equivalently,
the ¢>-norm of the vectorized matrix.

Orthogonal Projection. We formalize structured pruning and model folding as orthogonal projec-
tions in parameter space. A matrix C € R™*™ is an orthogonal projection if C = CT = C2, i.e., it
is symmetric and idempotent. Such projections map any parameter vector to its closest point (in the
Euclidean norm) within a lower-dimensional subspace.



If the columns of U € R™** form a basis of a k-dimensional subspace, the corresponding orthogonal
projection is
c=uu'u)'u’. )
Equivalently,
Cy= argmin |y—z|2
z€Range(U)
meaning Cy is the orthogonal projection of y onto the subspace spanned by U.

2.2 Compression as Orthogonal Projection

Structured pruning. Pruning can be viewed as a projection onto a coordinate-aligned subspace at the
level of neurons, filters, or channels. Assume the layer outputs are ordered so that the last m — k are
pruned. The corresponding basis U, spans the k-dimensional subspace, with projection matrix C,,
and transformed weight matrix W,:

I I 0
Up=(0>, cp=<0 O), W, = C,W. 3)

Consequently, the last m — k rows of W, are zero, and the corresponding neurons, filters, or channels
can be simply removed.

Model folding. Folding groups the parameters into % clusters and replaces each cluster with its mean.
Depending on the choice of clusters, a different folding results. Folding can be represented as an
orthogonal projection onto the k-dimensional subspace spanned by U € {0, 1}m** where each
row contains exactly one nonzero entry indicating the cluster assignment. A cluster S; comprises all
indices of parameter vectors belonging to it; thus, u¢(i,j) = 1 if and only if i € S.

The projection C defined in Eq.[2]maps each cluster to its mean [Wang et al., 2025]]. Specifically,
. . 1 .
W;=C;W, VieS;: w(i)=py, ,uj:?Zw(z), 4

where 115 is the mean of cluster j. After projection, all parameter vectors within a cluster are replaced
by their mean, making them identical. As a result, the corresponding layer outputs are also identical,
leaving a total of k distinct neurons, filters, or channels. Practically, the identical layer outputs can be
joined while adapting the next layer appropriately, see [Wang et al., 2025].

2.3 Folding Dominates Pruning

To compare pruning and folding, we first show that for any choice of pruning, there exists a folding
that yields a more accurate approximation of the parameter matrix W.

Theorem 2.1. Given any pruning with basis U, of rank 0 < k, < m—1 (i.e,, at least one parameter
vector is pruned), there exists a folding with basis U and rank ky = k,, + 1 such that

W = W, |5 > [|W — Wl[7,

where W), = C,W and Wy = CyW, with C,, and Cy denoting the orthogonal projections defined
in Eq.

The proof is provided in Appendix [C| Note that, by the Lipschitz continuity of the loss function in
Eq.[T] the superior approximation property of folding implies a tighter bound on the loss difference
compared to pruning:

[IL(W) = LW <k [[W =Wlp, [L(W)=LWy)| <r[W-W,|p,
with
W = W[5 < [W =W, 3.

Furthermore, the rank difference k;y = k,, + 1 between pruning and folding is practically negligible,
since in typical scenarios many parameter vectors are pruned. For instance, under a uniform 50%
per-layer retention, a ResNet-18 stage with 256 channels keeps k,, = 128 (so folding uses ky = 129),
and a ViT-B/32 block with width 768 keeps k, = 384 (so k;y = 385); the relative increase is just
1/kp ~ 0.78% and 0.26%, respectively—negligible in practice.

Finally, we show that folding using optimal k-means clustering never yields a less accurate approxi-
mation of the parameter matrix W than pruning.
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Figure 1: Folding outperforms magnitude pruning across diverse training regimes. Top row:
ResNet18 and PreActResNet18 on CIFAR-10. ResNetl8 checkpoints were trained from scratch
with Adam using different hyperparameter configurations. PreActResNet18 checkpoints are from
Andriushchenko et al.|[2023]. Bottom row: ViT-B/32 on CIFAR-10 from [[Andriushchenko et al.,
2023] and CLIP ViT-B/32 on ImageNet-1K from [Wortsman et al.| 2022]. See Appendix [D]for details.
In these plots, we use checkpoints that were trained without L1 regularization. Scatter plots show
post-compression accuracy for magnitude pruning (L1 criterion) versus folding at uniform per-layer
compression ratios (color-coded by layer-wise compression ratio). Bar plots depict the accuracy gain
by folding, computed as A = Acc(FOLD) — Acc(MAG1), as a function of layer-wise compression ratio.
Folding yields the largest improvements at moderate to high compression, confirming its robustness
across architectures and datasets. Fig. |§| shows the results for magnitude pruning with L2 criterion.

Theorem 2.2. Let U ¢ be the basis obtained from an optimal k-means clustering with ky clusters, i.e.,
the folding clusters are determined by a k-means algorithm minimizing the accumulated within-cluster
sum of squares. Then, for any pruning with basis Uy, of rank k, = ky — 1, we have

W = W, [[% > [|W — Wl|Z,

where W), = C, W and W y = CyW, with C,, and Cy denoting the orthogonal projections defined
in Eq.[2)

The proof is given in Appendix [C] This result demonstrates that k-means folding is not merely a
heuristic, but an optimal projection under clustering constraints. Unlike pruning, which relies on
parameter vector removal, folding generalizes the idea by enabling coordinated parameter merging.
Thus, folding incurs less parameter distortion and provably smaller functional deviation—consistent
with the cross-architecture results presented in the next section.

In addition, Theorem [2.2] has implications for a possible fine-tuning after compression. Matrix W
contains the optimized weights and W, or W ¢ contain the weights after pruning and folding the
optimized network. As a result of Theorem 2.2} the quadratic distance between the optimized weights
and the compressed optimized weights is smaller for folding in comparison to pruning.

Our theoretical results employ a one—rank slack comparing pruning at rank k, to folding at by =
kp + 1, as a proof device to obtain a clean monotonicity guarantee on projection error. This slack
does not reflect our evaluation protocol. In all experiments we enforce matched sparsity budgets and
compare methods at the same retained size (parameters and FLOPs). Hence, empirical accuracy gaps
cannot be attributed to extra capacity.
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Figure 2: MAG1 versus FOLD on ViTs after LayerNorm-only fine-tuning for ViT-B/32 on CIFAR-10
and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
wise compression. Bar plots depict the accuracy gain A = Acc(FOLD) — Acc(MAG1), which remains
positive and typically grows with compression, indicating that even under lightweight LayerNorm
adaptation FOLD retains a consistent advantage over pruning.

3 Experimental Results

Most pruning studies vary only seeds by training several checkpoints under a single hyperparameter
recipe, leaving the role of upstream training underexplored. We instead benchmark > 1’000 check-
points spanning diverse hyperparameters (optimizers, learning rates, augmentation, regularization,
SAM) to quantify how training choices interact with folding and pruning. Concretely, we train 216
ResNet18 (Adam) and 576 ResNet18 (SGD) models on CIFAR-10, include 50 PreActResNet18 and
200 ViT-B/32 checkpoints from |[Andriushchenko et al.|[2023]], and add 72 CLIP ViT-B/32 models
fine-tuned on ImageNet-1K from Wortsman et al.|[2022]. The two ViT families differ markedly in
scale (~19M vs. ~151M parameters). We also train 18 LLaMA-family 60M parameter models on
the Colossal Clean Crawled Corpus (C4) [Raffel et al., 2020]. Training details are in Appendix [D]

We empirically compare model folding and structured pruning across CNNs, ViTs and LLaMA-60M
models under matched training setups. Unless explicitly stated, we do not apply gradient-based
fine-tuning: for CNNs we only re-estimate BatchNorm statistics via a single forward pass using
REPAIR [Jordan et al.| 2023]] to isolate structural effects, and ViTs / LLaMA-60M models are left
uncalibrated. Note that REPAIR was recently shown to substantially improve post-compression
performance for pruned models [Saikumar and Varghesel 2025, and has also been applied on top
of folding [Wang et al.l [2025]]. We report results (i) immediately after compression (CNNs after
REPAIR, ViTs and LLaMA-60M models with no further step), (ii) for ViTs additionally after a
LayerNorm reset, and (iii) for CNN and ViT families after 1-5 epochs of full fine-tuning.

Folding vs. Structured Pruning on CNNs and ViTs. We compare model folding (FOLD) with
structured magnitude pruning (MAG) under L1 and L2 criteria (MAG1, MAG2) across representative CNN
and ViT architectures. Fig. [T summarizes results: scatter plots show accuracy of MAG1 vs. FOLD for
each trained model, with compression ratio indicated by color. Results for MAG2 are in Appendix [E]
Box plots depict the distribution of accuracy differences between FOLD and MAG1. Positive differences
indicate folding outperforms pruning, with the gap widening at higher sparsity. This trend holds
across ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on both CIFAR-10 and ImageNet-
1K, demonstrating robustness to architecture and dataset scale. These results support our theoretical
claim (Sec. [2): folding projects onto cluster-structured subspaces, preserving parameter alignment
and reducing functional distortion, yielding consistent accuracy gains over magnitude pruning.

Performance Comparison after Lightweight and Full Fine-Tuning. The results above isolate
structural effects by evaluating models without additional optimization. We now ask whether folding’s
advantage persists with post-compression fine-tuning. Fig. 2]compares MAG1 and FOLD on ViTs under
the lightweight LayerNorm-only adaptation. Across ViT-B/32 (CIFAR-10) and CLIP ViT-B/32
(ImageNet-1K), folding consistently achieves higher post-compression accuracy after a LayerNorm
reset, with the accuracy gap A = Acc(FOLD) — Acc(MAG1) remaining positive and typically widening
as compression ratio increases. This indicates that even with the lightweight LayerNorm recalibration,
folding preserves more of the pre-compression function than structured pruning. We then allow
short-horizon fine-tuning and assess whether the advantage persists.
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Figure 3: Folded models retain their accuracy advantage after fine-tuning. Results for ResNet18
trained by Adam on CIFAR-10 (top row) and CLIP-ViT-B/32 trained on ImageNet-1K (bottom row):
(a,d) compares post-compression accuracy of magnitude pruning (MAG1) versus folding (FOLD) after 1
and 5 epochs of fine-tuning. (b,e) show the accuracy gap between folding and pruning as a function
of fine-tuning epochs, demonstrating that folding maintains a consistent lead, i.e., the FOLD accuracy
delta is positive. (c,f) illustrate accuracy trajectories before and after 5 epochs of fine-tuning for both
methods, highlighting that folded models recover accuracy faster. Further results in Appendix @

We now fine-tune folded and pruned models for 1-5 epochs and compare recovery. Fig. [3|shows that
(a,d) folded models start from higher accuracy and retain their lead at 1 and 5 epochs, (b,e) the relative
accuracy gap remains positive, and (c,f) learning curves recover faster with fewer plateaus. Consistent
with the projection view, folding preserves more of the pre-compression function, yielding a better
initialization that requires fewer updates to reach high accuracy, making it attractive in pipelines with
limited fine-tuning.

weight_decay warmup_steps max_Ir PPL] 0% sparsity | PPL| MAG2 (20%) PPL/ FOLD (20%) | PPL| MAG2 (50%) PPL. FOLD (50%)
0.01 880 0.001 32.11 54.51 47.17 398.62 221.32
0.01 1100 0.001 32.14 50.11 46.75 220.54 172.57
0.01 2200 0.001 32.20 46.57 47.54 174.58 216.36

0 880 0.001 32.17 51.14 48.23 220.33 223.86
0 1100 0.001 3221 50.03 47.47 231.41 204.47
0 2200 0.001 32.40 46.38 46.92 177.48 185.27
0.01 880 0.005 30.12 68.70 55.32 641.69 302.43
0.01 1100 0.005 29.77 68.29 49.81 564.96 234.56
0.01 2200 0.005 29.60 54.50 47.04 360.52 208.02
0 880 0.005 30.47 78.73 62.35 762.05 395.04
0 1100 0.005 30.17 59.20 49.58 544.87 184.74
0 2200 0.005 29.75 56.18 46.55 353.35 165.21
0.01 2200 0.01 29.25 51.46 44.28 323.68 288.83
0.01 880 0.01 31.82 66.98 51.80 910.48 406.75
0.01 1100 0.01 29.85 102.41 67.69 977.92 367.94
0 2200 0.01 29.57 54.43 47.77 351.11 209.06
0 880 0.01 108.56 129.77 123.85 279.17 198.72
0 1100 0.01 30.31 97.97 61.19 860.14 533.62

Table 1: Evaluation of FOLD and MAG2 on LLaMA-60M. We train and evaluate 18 LLaMA-family
models with 60M parameters on C4 by varying max_lr, warmup steps and weight decay. Columns
3-8 show perplexity of the trained model (at 0% sparsity), and the model perplexity after pruning /
folding using layer-wise pruning ratio of 20% and 50%. We prune only FEN blocks. Except for low
learning rates with long warmup schedules, FOLD outperforms MAG2 (highlighted in bold).



Performance Comparison on LLaMA-60M. TableI|reports the evaluation of FOLD and MAG2 on
LLaMA-60M models trained and evaluated on the Colossal Clean Crawled Corpus (C4) [Raffel
et al., |2020]] under diverse hyperparameter settings. We vary the maximum learning rate, warmup
length, and weight decay across 18 training runs and apply pruning and folding exclusively to the
FFN blocks. The results show perplexity at baseline (0% sparsity) as well as after applying layer-wise
pruning with ratios of 20% and 50%. With the exception of models trained using very low learning
rates combined with long warmup schedules, FOLD consistently outperforms MAG2.

4 Model Compression Ablation Studies

The previous sections demonstrated that folding often outperforms structured pruning across archi-
tectures and compression ratios. On ResNets and ViTs, we probe which training factors impact this
advantage by analyzing sensitivity to learning rate, the use of sharpness-aware training (SAM) [Foret
et al.,|2021]], regularization and data augmentation [Prabhu et al., 2019]—the hyperparameters known
to influence loss landscape geometry and generalization [Fort and Jastrzebski, 2019, |L1 et al., |2018|
Neyshabur et al., 2017} |Chen et al.,2022] in non-trivial ways [[Andriushchenko et al.| [2023]].

Role of Optimizer. We repeat the ResNet18 analysis under Adam and SGD to gauge optimizer
sensitivity. Compared to the Adam-trained sweep in Fig. [[(a), the complementary SGD sweep in
Fig. 4] shows the same qualitative ordering—FOLD exceeds MAG1 across compression levels—but
with different baselines and dispersion: SGD checkpoints form a tighter cloud and exhibit a smaller
median gap, whereas Adam yields larger variance and at times a more pronounced FOLD advantage,
especially at higher compression. Together, these plots indicate that the optimizer changes how much
headroom folding has, not whether it leads: the FOLD-MAG1 difference remains positive under both
optimizers, but its magnitude is optimizer-dependent.

Effect of Learning Rate. Fig. [5]reports post-
compression accuracy for FOLD versus MAGT
across learning rates on ResNetl8 (Adam,
SGD), PreActResNet18, and ViT-B/32. With ]
Adam, FOLD ’s edge is largest at moderate—low a8 10
rates, narrows and can reverse at very high rates, uo_s
and vanishes again at extremely small rates (both ’
methods degrade). For SGD, the dependence is 8 M S PP PO E R P

weaker and can be inverted (e.g., ViT-B/32). A MAG1 Test Accuracy [%] Layer-wise Compression Ratio
plausible explanation is that moderate learning
rates steer training toward flatter, more struc-
tured solutions with stronger within-layer corre-
lations—favorable for clustering—whereas very
high rates yield sharper, less-aligned solutions and very small rates underfit. Adaptive methods like
Adam are further associated with sharper minima and distinct generalization behavior compared to
SGD, amplifying this sensitivity [Wilson et al., 2018 |Jastrzebski et al.l 2018, Zhou et al.| 2021]].
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Figure 4: Optimizer effect evaluated on ResNet18
checkpoints trained on CIFAR-10 with SGD (no L1
normalization). The figure complements Fig. Era).

Effect of SAM. Fig. [6] evaluates training with and without SAM and measures post-compression
accuracy. Across models, SAM lifts both methods, but the gain is systematically larger for FOLD,
widening the FOLD-MAG1 gap—most visibly for Adam-trained ResNet18. With light L1 regularization
(10~?) during training shown in (b), pruning narrows the gap at low compression (where induced
sparsity aligns with LL1), yet FOLD regains and extends its lead as compression increases. These trends
are consistent with the view that SAM steers training to flatter solutions, reducing curvature sensitivity.
Combined with FOLD ’s smaller projection error, this yields greater robustness to compression. At
larger SAM radii p, training enforces robustness to broader parameter perturbations. Within this
flatter neighborhood both pruning and folding projections operate inside the same robustness ball, so
their geometric differences matter less and the gap narrows—an effect stronger for ViT-B/32, where
high p homogenizes head/channel saliencies and reduces the relative advantage of clustering.

Effect of Data Augmentation. Fig.[7|plots the distribution of AAccuracy (FOLD — MAG1) across
checkpoints versus the layer-wise compression ratio, contrasting runs without (gray) and with
RandAugment (green). For ResNet18 (Adam and SGD) and PreActResNet18, RAUG reduces or shifts
FOLD ’s relative benefit. In contrast, for ViT-B/32 RAUG increases FOLD ’s advantage: the median
A rises with compression, suggesting that augmented ViT representations are especially amenable
to projection-based removal. A plausible mechanism is that augmentation biases training toward
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Figure 5: Learning rate modulates folding’s edge. Post-compression accuracy of FOLD and MAG1
across learning rates: ResNetl8 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d).
FOLD leads at moderate—low rates. With Adam, the gap shrinks or reverses at very high rates, and
closes again at extremely small rates. SGD shows weaker or opposite dependence.

flatter, more invariant solutions. This is consistent with recent theory linking augmentation-induced
input perturbations to equivalent parameter-space perturbations and showing that augmentations bias
training toward flatter minima [[Yoo and Yoon, 2025]]. In CNNs this reduces the harm of axis-aligned
magnitude cuts, whereas in ViTs the same invariances tighten feature clusters that FOLD preserves
better than MAG1, amplifying the benefit at high compression. Standard augmentation (augm=True)
shows a similar trend and is omitted for brevity.

These ablations reveal a consistent pattern: conditions that encourage flatter and structured solu-
tions—moderately low learning rates and SAM with a small-moderate radius—magnify FOLD ’s
advantage, whereas extremes reduce it: very high or very low learning rates, stronger augmentations,
or large SAM radii narrow the gap; SGD generally dampens all effects relative to Adam. This aligns
with our projection view (Sec.[2): when weights are well aligned, clustering reduces projection error
more than coordinate removal and thus perturbs the function less, while weaker alignment or broad
robustness neighborhoods make the two projections behave more similarly.

5 Conclusion, Limitations, and Outlook

We framed structured pruning and model folding as projection-based compression and showed that
folding achieves smaller parameter deviation with a one-rank slack, implying tighter functional preser-
vation under mild smoothness. A calibration-free evaluation over >1°000 checkpoints (ResNet18,
PreActResNet18, ViT-B/32, CLIP ViT-B/32; CIFAR-10, ImageNet-1K; and LLaMA-60M on C4)
found that FOLD typically surpasses MAG1 in post-compression accuracy, with the clearest gains at
moderate-high compression and under training conditions that induce flatter, more structured solu-
tions (e.g., moderate learning rates, SAM). The gap narrows at very low compression and can shrink
under strong data augmentation or large SAM radii, but the overall trend is robust across optimizers
and a wide range of tested hyperparameters.

Limitations. Our theoretical guarantee allows a one-component increase in compressed rank
but does not establish universal dominance at exactly matched sizes. Empirically, we focus on
standard CNN and ViT families on CIFAR-10 and ImageNet-1K, as well as LLaMA-60M models
on C4. For ViTs and LLaMA, pruning and folding are applied only to the FEN blocks. Extensions
to attention layers is left for future work. We evaluate in strictly calibration-free settings, with
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Figure 6: SAM [Foret et al.,[2021] can boost model compression. Post-compression accuracy
under training with / without SAM. (a) ResNet18 (Adam), no L1. (b) ResNet18 (Adam), L1= 10~
(c) PreActResNet18 (SGD), no L1. (d) ViT-B/32, no L1. SAM improves both FOLD and MAG1, but
the uplift is consistently larger for FOLD, especially with Adam. Light L1 regularization helps MAG1 at
low compression, yet FOLD retains a clear advantage at moderate—high compression.
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Figure 7: Augmentations have a generally positive effect on the post-compression accuracy. Post-
compression accuracy w/wo random augmentations for (a) ResNet18 (Adam), (b) ResNet18 (SGD),
(c) PreActResNet18, and (d) ViT-B/32. Augmentations boost both FOLD and MAG1. On ResNet18 they
narrow FOLD ’s advantage (noticeable at moderate compression) due to added invariances making
axis-aligned removals less damaging. In ViT-B/32, augmentations are essential for foldinéj

optional BatchNorm/LayerNorm resets and short fine-tuning budgets, and compare primarily against
magnitude-based structured pruning. Interactions with quantization, distillation, and unstructured
sparsity are not considered. Larger LLMs are beyond the scope of this study due to the computational
cost of training across diverse hyperparameter settings. We note that most SoTA pruning methods for
LLMs rely on calibration data (e.g., activation-aware/second-order) and are exclusively pruning-based.

Outlook. We plan to extend folding to pruning/folding attention blocks, calibration-based settings
and evaluate on larger LLMs/VLMs. We also plan to study interactions with quantization and
adaptation methods. More broadly, our projection-based view positions folding as a geometry-aware
primitive for compression: a foundation on which hybrid pipelines with quantization and distillation
can be built, and a step toward principled frameworks that unify efficiency and functional preservation.
In this sense, folding is not only a practical tool but also a building block for the next generation of
compression methods tailored to foundation models and deployment at scale.

'Note that the base accuracy of ViT-B/32 checkpoints trained without RAUG is lower than with RAUG.
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Appendix

The following sections provide supplementary information and complement the main paper:

. Appendix@ Code, Data, and Resources.

* Appendix B} Use of Large Language Models.
* Appendix[C} Proofs of Theoretical Claims.

* Appendix [D} Training Details.

* Appendix [E} Further Empirical Results.

* Appendix[F} Related Work.

A Code, Data, and Resources

Code and logs. An anonymous repository with all source code, experiment configs, and figure-
generation scripts (including the exact logs used to render every plot/table) are released at https:
//github.com/osaukh/folding_as_projection. The repo contains: implementations of folding
and pruning operators, training/evaluation pipelines, scripts to plot ablations, and notebooks to
reproduce figures directly from logs. We log all training metrics and hyperparameters with Weights
& BiasesE] and export logs alongside the code for reproduction. Additionally, we provide another
anonymous repo for reproducing results of compressing LLaMA-60M with folding and magnitude
structured pruning at https://github.com/nanguoyu/simple_model_folding_publicl

Our folding implementation is based on the code by Wang et al. [2025ﬂ

Datasets. We use CIFAR—I(ﬂ and ImageNet-lKﬂ CIFAR-10 is downloaded automatically via
torchvision. ImageNet-1K requires the official credentials and follows its license. Pretrained/fine-
tuned checkpoints referenced in the paper are either trained by us (configs in the repo) or obtained
from the cited works [[Andriushchenko et al., 2023, [Wortsman et al., | 2022]]. The download links are
also provided in Appendix

Compute resources. Experiments were run on a cluster featuring 8 x NVIDIA A100 (80 GB RAM)
GPUs. All random seeds are fixed in the configs and scripts.

Computational complexity and memory cost. At inference and matched retained sizes, folding
and structured pruning yield the same compute and memory. The difference lies in the compression
step: magnitude pruning is a one-pass scoring and selection procedure (O(pm) to score p filters of
dimension m, plus O(plog p) selection), whereas folding runs k-means on layer weights with T
sweeps. Using Hartigan’s algorithm [Hartigan and Wong, |1979]], one sweep costs O(pkm), with max
T = 10 sweeps the total is O(pkmT) (effectively linear in pm when k is small). This cost is paid
once per layer and is small compared to training.

Runtime overview. The most expensive step in our study is fine-tuning of CLIP VIT-B/32 on
ImageNet-1K (1-5 epochs), which dominates wall-clock time (order of hours per run). In contrast,
compression is lightweight: on CPU, FOLD takes ~5-12 s per ResNet18 checkpoint and ~8-12 s per
ViT-B/32 (per-layer 50% removal).

B Use of Large Language Models

We used ChatGPT E] for sentence-level grammar correction and improvement, drafting trivial plotting
snippets to produce figures from logs, and code readability edits. All ideas, proofs, experiments, and
analyses are ours.

*Weights & Biases: https://wandb.ai

*Model folding universal: https://github.com/nanguoyu/model-folding-universal and model folding
for CNNs: https://github.com/marzad6/ModelFolding/

4CIFAR-10: https://www.cs. toronto.edu/~kriz/cifar.html

5ImageNet-lK: https://image-net.org/

%ChatGPT / GPT-5: https://chatgpt.com
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C Proofs of Theoretical Claims

Below we prove that for any choice of pruning, there exists a folding that yields a more accurate
approximation of the parameter matrix W.

Theorem 2.1. Given any pruning with basis U, of rank 0 < k, < m — 1 (i.e., at least one parameter
vector is pruned), there exists a folding with basis Uy and rank ky = k;, + 1 such that

W — W, |[5 > |[W - W|[f,
where W), = C, W and Wy = CyW, with C,, and C denoting the orthogonal projections defined
in Eq.[2}

Proof. The rows of W can be ordered such that the pruned parameter vectors are first:
w(l),...,w(m — kp). Then we find that

using Eq. 3] For the existence proof, we choose a folding that clusters all parameter vectors
w(1),...,w(m — k) into a single cluster, all other parameter vectors have individual clusters, i.e.,

w(l) —p
1 0 - ek
- 0 w(m — ky) — 1 S
Ur=141 o 3 W-W;= ( Op) 1 p=—— w(i)
0 I e Pi=1
0
using Eq. 4}
We have |[W — W, |2 = 77" w(i)Tw(i) and
m—kp m—kp
IW = Wyl5 = > (wli) = )" (wli) — ) = (w(@) w(i) — 2w(@)" p+ " 1)
i=1 i=1
m—Fkp
= 3 w(@)Tw(i) — (m— k)u"u
i=1
m—ky
< D wl)Twi) = W - W,|7
i=1
The latter inequality directly establishes the theorem. O

The following theorem shows that folding using optimal k-means clustering never yields a less
accurate approximation of the parameter matrix W than pruning.

Theorem 2.2. Let U ¢ be the basis obtained from an optimal k-means clustering with ky clusters, i.e.,
the folding clusters are determined by a k-means algorithm minimizing the accumulated within-cluster
sum of squares. Then, for any pruning with basis Uy, of rank k, = ky — 1, we have

W —W,|% > [W - W%,
where W, = C, W and Wy = C;W, with C, and C denoting the orthogonal projections defined
in Eq.2)

Proof. According to|Bauckhage| [2015]] and Wang et al.|[2025]], the problem of k-means clustering
can be formulated as the following constrained matrix factorization problem:

. T 11T 2 . .. .o .
min |[W-u@w'u)~'u WHF subjectto  u(4,j) € {0,1}, Zu(z,]) =1Vi.
j
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This formulation coincides with the orthogonal projection of model folding, see Eq. 2] and Eq.
Theorem guarantees the existence of a folding basis U ¢ and the corresponding projection C ¢ for
any pruning W, of W, such that

W =W,z > [[W—W;|E.

Since optimal k-means clustering achieves the minimal possible error ||[W — W ¢||2., the theorem
follows.

D Training Details

The following subsections detail the hyperparameters used to train our checkpoints. For checkpoints
taken from the literature, we summarize the available training details.

D.1 ResNetl8 on CIFAR-10 Training Setup with Adam and SGD

We trained a total of 792 ResNet18 models on CIFAR-10 by varying hyperparameter configurations.
We used two optimizers: Adam and SGD. Tab. [2] summarizes the parameter combinations explored
for each optimizer. For Adam, we used 3 learning rates and 1 momentum value. For SGD, we used 3
learning rates and 2 momentum values. The remaining parameters were shared across both optimizers:
weight decay (3 values), L1 regularization (2 values), RandAugment (2 values), Sharpness-Aware
Minimization (3 values), and learning rate scheduling (2 values). This resulted in 216 models trained
with Adam and 576 models trained with SGD. In the ablation studies, we filter checkpoints (as
specified in the figure captions) to highlight the observed effects.

Parameter Values
Optimizer adam, sgd
Learning Rate adam: 0.1, 0.01, 0.001
sgd: 0.1, 0.05, 0.01, 0.001
Momentum adam: 0.0
sgd: 0.9, 0.99
Weight Decay 0.0, 0.0005, 0.001
L1 Regularization 0.0,1x107°
RandAugment True, False
SAM (Sharpness-Aware Minimization) None, 0.05, 0.1
Learning Rate Schedule True, False

Table 2: Hyperparameter combinations used for ResNet18 training on CIFAR-10.

D.2 PreActResNet18 on CIFAR-10

We use 50 trained PreActResNet18 models on CIFAR-10 from |Andriushchenko et al.| [2023]} The
models are trained using a fixed set of training parameters and a sweep over a few key hyperparameters.
Tab. 3| summarizes varied parameters used in this experiment. All checkpoints used the same training
protocol: 200 epochs, batch size 128, and no label noise. The model width was fixed at 64 and the
learning rate schedule followed a cyclic pattern. Only the maximum learning rate (Lr_max), SAM
strength (sam_rho), and augmentation settings were varied. For the learning rate ablation studies, we
adopt the reported maximum learning rate.

D.3 ViT-B/32 on CIFAR-10

The 200 Vision Transformers (ViT) also from |/Andriushchenko et al.| [2023]], width=256, were trained
on CIFAR-10, batch size 128, for 200 epochs with a cosine learning rate schedule and linear warmup.
The main hyperparameters are summarized in Tab. {4} We made use of the maximum learning rate, the
use of data augmentation, and the use of Sharpness-Aware Minimization (SAM) in our evaluations.
All other settings were fixed.

"Download link: |https://drive.google.com/drive/folders/1LmthJCb3RXBFWjeTOC4UOOL7Ppgg2h7n
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Figure 8: Folding outperforms magnitude pruning across diverse training regimes. The same
setup as in Fig. |1} but compared to the L2 magnitude pruning criterion. Top row: ResNet18 and
PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch with Adam using
different hyperparameter configurations. Bottom row: ViT-B/32 on CIFAR-10 and CLIP ViT-B/32
on ImageNet-1K. Scatter plots show post-compression accuracy for folding versus magnitude pruning
(L2 criterion) at uniform per-layer compression ratios. Bar plots depict the accuracy gain by folding,
computed as A = Acc(FOLD) — Acc(MAG2), as a function of layer-wise compression ratio. Folding
yields the largest improvements at moderate to high compression, confirming its robustness across
architectures and datasets.
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Figure 9: FOLD versus MAG2 on ViTs after LayerNorm-only fine-tuning for ViT-B/32 on CIFAR-10
and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
wise compression. Bar plots depict the accuracy gain A = Acc(FOLD) — Acc(MAG1), which remains
positive and typically grows with compression, indicating that even under lightweight LayerNorm
adaptation FOLD retains a consistent advantage over pruning. The figure follows the same setup as
Fig. |2| in the main paper, but for MAG2.

D.4 CLIP ViT-B/32 on ImageNet-1K

CLIP [Radford et al., [2021]] models are known for the widespread use of CLIP features [Ramesh
et al., [2022]]. We use the pool of models introduced by |Wortsman et al.| [2022], who fine-tuned
the CLIP ViT-B/32 architecture on ImageNet-1K multiple times using different randomly sampled
training hyperparametersﬂ These hyperparameters include learning rate, number of training epochs,
weight decay, label smoothing, and augmentation strategies, as stated in [Wortsman et al.| |2022]. The
resulting collection of 72 fine-tuned models provides a strong basis for evaluating the performance

$Download link: https://github.com/mlfoundations/model-soups/releases/
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Parameter Values

Optimizer sgd

Max / Base Learning Rate (1r_max) from 0.0504 to 4.9759
SAM Strength (sam_rho) 0.0, 0.05, 0.1
Standard Augmentation (augm) True, False
RandAugment (randaug) True, False

Table 3: Fixed and varying parameters for PreActResNet18 training on CIFAR-10.
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Figure 10: FOLD outperforms MAG1 after full fine-tuning for 1-5 epochs on PreActResNet18 and
ViT-B/32 on CIFAR-10. Results for PreActResNet18 (top) and ViT-B/32 (bottom). (a,d) accuracy
of MAG1 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap A over epochs, remaining
positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing faster recovery
and higher final accuracy for FOLD. The figure extends Fig. [3|in the main paper to PreActResNet18
and ViT-B/32 architectures where FOLD is benchmarked against MAG1.

of model folding compared to pruning on CLIP ViT architectures. All checkpoints were evaluated
jointly in our study, without parameter-specific ablations.

D.S LLaMA-60M on Colossal Clean Crawled Corpus (C4)

We train 18 LLaMA-family models with 60M parameters|Touvron et al.|[2023alb]] on the Colossal
Clean Crawled Corpus (C4) [Raffel et al., |2020] on a NVIDIA DGX Station A100 featuring eight
NVIDIA A100 GPUs (each equipped with 80GB memory). The training time for a LLaMA-60M
model is about 45 minutes.

Tab. [5] summarizes the fixed hyperparameters used to train LLaMA-60M. We adopt a maximum
sequence length of 256 and a batch size of 131,072 tokens. The learning rate is linearly warmed up,
followed by a cosine annealing schedule that decays to 10% of the initial value. We use the T5-base
tokenizer [Raffel et al.l 2023]], consistent with prior work [Glentis et al., 2025, |Han et al.| 2024]).

Note that in our work, pruning and folding are applied exclusively to the feed-forward network (FFN)
layers of the trained LLaMA-60M models.
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Parameter Values

Optimizer sgd

Max / Base Learning Rate (lr_max) from 0.005087 to 0.492936
SAM Strength (sam_rho) 0.0, 0.05, 0.1

Standard Augmentation (augm) True, False

RandAugment (randaug) True, False

Table 4: Fixed and varying parameters for ViT-B/32 Base training on CIFAR-10.

Params Hidden Intermediate Heads Layers Steps Data (Tokens)

60M 512 1376 8 8 11K 1.3B
Table 5: Training hyperparameters of LLaMA-60M architecture.

E Further results

We provide additional experiments to complement the main results. Fig. 8| mirrors the setup of Fig.
in the main paper, but replaces the L1 criterion for magnitude pruning with L2 (MAG2). Similarly,
Fig. [0 Fig. Fig. and Fig. [12] extend the corresponding figures in the main paper to other
network architectures and to the L2 case. Across all comparisons, the qualitative picture remains
the same: FOLD consistently matches or outperforms magnitude pruning, independent of the chosen
norm.

We further include ablations to study the robustness of these findings with respect to training
hyperparameters. Fig.[T3] Fig.[T4] and Fig. [I5|report the effect of varying learning rate, SAM strength,
and RandAugment, respectively. Finally, Fig. [T6]shows the influence of weight decay. Taken together,
these studies confirm that the relative advantage of FOLD is stable across different regularization
strategies and training configurations.

F Related Work

Model compression reduces inference cost and memory footprint, which is critical for deploying
deep neural networks in resource-constrained environments. While techniques such as quantiza-
tion [Darvish Rouhani et al., |2020, |Qian Zhang et al., [2022]] and knowledge distillation transfer
knowledge or reduce precision, we focus on structured compression methods that optimize the model
architecture post-training without using data, i.e., are calibration-free. Among these, sparsity-based
pruning is the most widely used: magnitude-based sparsity [Han et al.,[2015| [Lu et al.,|2023| [Ding
et al.,|2024, Bambhaniya et al., 2024]] removes weights or channels based on their absolute values,
often followed by fine-tuning to recover accuracy [Kurtic et al.| 2022, |Sanh et al.,[2020]]. Structured
patterns such as N:M sparsity [Yao et al.l 2019| [Kang| [2020]] and calibration-based one-shot methods
like SparseGPT [Frantar and Alistarhl 2023]] or Wanda [[Sun et al., [2024]] further improve efficiency,
although fine-tuning remains beneficial [Sun et al., 2024, [Lu et al., 2024} |Syed et al.| 2023]]. Recently,
Wang et al.| [2025]] introduced model folding, which clusters and merges similar weights across
layers to yield dense low-rank representations. Unlike pruning, folding preserves structural couplings
and achieves competitive compression without requiring data or retraining. Our work provides
theoretical insights into this effect, linking folding to curvature regularization and geometry-aware
approximations.
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Figure 11: Folded models retain their accuracy advantage after fine-tuning. Results for ResNet18
trained by Adam (top row) and PreActResNet18 trained by SGD on CIFAR-10 (bottom row): (a,d)
compares post-compression accuracy of magnitude pruning with L2 criterion (MAG2) versus folding
(FOLD) after 1 and 5 epochs of fine-tuning. (b,e) show the accuracy gap between folding and pruning
as a function of fine-tuning epochs, demonstrating that folding maintains a consistent lead, i.e., the
FOLD accuracy delta is positive. (c,f) illustrate accuracy trajectories before and after 5 epochs of
fine-tuning for both methods, highlighting that folded models recover accuracy faster and reach
higher final performance than pruned models. The figure extends Fig. [3|in the main paper and Fig. [T0]
in the appendix to MAG2.
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Figure 12: FOLD outperforms MAG2 after full fine-tuning for 1-5 epochs on ViT-B/32 and CLIP
ViT-B/32. Results for ViT-B/32 on CIFAR-10 (top) and CLIP ViT-B/32 on ImageNet-1K (bottom).
(a,d) accuracy of MAG2 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap A over epochs,
remaining positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing
faster recovery and higher final accuracy for FOLD. The figure extends Fig. [3]in the main paper and
Fig.[I0]in the appendix to MAG2.
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Figure 13: Learning rate modulates folding’s edge. Post-compression accuracy of MAG2 and FOLD
across learning rates: ResNet18 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d).
FOLD typically leads at moderate—low rates; the gap shrinks or reverses at very high rates, and closes
again at extremely small rates. The same setup as in Fig. |§|in the main paper, but for MAG2.
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Figure 14: SAM can boost model compression. Post-compression accuracy under training
with/ without SAM. (a) ResNet18 (Adam), no L1. (b) ResNetl8 (Adam), L1= 107°. (c) Pre-
ActResNet18 (SGD), no L1. (d) ViT-B/32, no L1. The figure extends the results in Fig. |§|to MAG2.

20



~ 40| O NoRAUG N30/ O NoRAUG
Q B RAUG 2 B RAUG
— 80 = 30 — 80 =25
I IS :
= S 20 = 320
> o > Q
© 60 £ 10 I g 60 L5
= 4 TR 5
T < >
<40 Z | 40 Z
a © a C 5
2 5 -10 l 2 5 ﬁ
e g e g lat 4
20 < -20 20 < L e B e e e B
< o No RAUG <
O 0D O D ® A0 P s Fus © 0D O D O A D
20 40 60 80 ¥ oY 70T 0?0 0P e? 20 40 60 80 NENANANININ SN
MAG2 Accuracy [%] Layer-wise Compression Ratio MAG2 Accuracy [%] Layer-wise Compression Ratio
(a) Adam, MAG2 vs FOLD (b) SGD, MAG2 vs FOLD
<400 o NoraUG 25
F) o o o m—No I~ O No RAUG
o - s u [RAUG 2 20 ®m RAUG
80 < g £ - s
g v 3 g Do
Z60 g g 2 10
© L 20 & L
3 2 3 g s
Lao 3 £ e EEE
g PE T ;s L
20 <0 1 e <
o NoRAUG < < -10
° RAUG 201 ° RAUG
O 0,0 O P AP P O L0 O O A O P
00 20 40 60 80 0'N Q’} Q"” 0?‘ 0(? 0@) Qﬁ 0"6 09 20 40 60 80 Q/} 0")) OP‘ 0?) Q'b Q/’\ 0"6 09
MAG2 Accuracy [%] Layer-wise Compression Ratio MAG2 Accuracy [%] Layer-wise Compression Ratio
(c) PreActResNet, MAG2 vs FOLD (d) ViT-B/32, MAG2 vs FOLD

Figure 15: Random augmentations narrow the folding—pruning gap. Post-compression accuracy
on ResNet18 (CIFAR-10) trained without vs. with random augmentations: (a) Adam, (b) SGD, (c¢)
PreActResNet, (d) ViT-B/32. The figure extends Fig. |Z|t0 MAG2.
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Figure 16: ResNet18: Weight Decay. Test accuracy of ResNet18 checkpoints trained with varying
weight decay values. Weight decay does not diminish the advantage of FOLD compared to MAG2,
especially for SGD-trained models.
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