
Quant-Trim in Practice: Improved Cross-Platform
Low-Bit Deployment on Edge NPUs

Rayen Dhahri Steffen Urban
Corporate Research and Technology, Carl Zeiss AG
{rayen.dhahri, steffen.urban}@zeiss.com

Abstract

Specialized edge accelerators rely on low-bit quantization, but vendor compilers
differ in scaling, clipping, and kernel support, often as black boxes. The same
floating-point (FP) checkpoint can therefore yield inconsistent accuracy across
backends, forcing practitioners to tweak flags or refactor models to vendor-friendly
operator subsets. We introduce Quant-Trim, a training-phase method that produces
a hardware-neutral checkpoint robust to backend and precision choices. It com-
bines progressive fake quantization to align training with the deployed integer grid
and reverse pruning to tame outlier-driven scale inflation while preserving learn-
ability. Quant-Trim is agnostic to quantization schemes (symmetric/asymmetric,
per-tensor/per-channel, INT8/INT4) and requires no vendor-specific graph changes.
Across models and tasks, it narrows the FP→low-bit gap, reduces dependence
on compiler heuristics/calibration, and avoids per-backend retraining. We report
accuracy and edge metrics latency, throughput, energy/inference, and cost under
static/dynamic activation scaling and varying operator coverage.

1 Introduction

Deploying neural networks in production typically imposes high demands on latency, power con-
sumption, and cost, especially on the edge. Quantization is a primary lever: mapping floating-point
parameters and activations to low-bit integers reduces compute and bandwidth without changing
architecture [11, 20, 16]. In practice, however, low-bit accuracy is dominated by activations: their
wide dynamic range, nonstationary statistics, and outliers make them fragile under clipping and
coarse scaling [3, 8, 37, 26, 5].

A common compromise is to keep activations in FP16/BF16 while quantizing weights, which
improves stability but retains higher memory traffic and power consumption [29, 17]. By contrast,
many NPUs/ASICs enforce INT8 for both weights and activations with offline calibration [16, 36, 35,
34]. This heterogeneity means that the same FP checkpoint can produce widely varying accuracy
across backends due to opaque scaling/fusion choices; and the need to redesign architectures for
“quantization-friendliness,” distill into restricted operator sets, or retrain per target [11, 8, 3, 30].
Methods that rescale activations into weights [37] or isolate outliers in higher precision [5] help,
but typically assume backend support that is not universal on NPUs and remain restricted under
vendor-specific quantizers aligning with their compilers.

We introduce Quant-Trim, a training-time procedure that produces a single, hardware-agnostic
checkpoint robust to vendor compilers and precision regimes. Quant-Trim couples (i) progressive
fake quantization, which interpolates between FP32 and low-bit scales to align forward statistics
smoothly with the deployment grid, and (ii) reverse pruning, which pins extreme weights at the
quantization boundary to prevent scale inflation while preserving learnability. By aligning train-time

EurIPS 2025 Workshop: Rethinking AI: Efficiency, Frugality, and Sustainability.

numerics with deployment, our recipe reduces sensitivity to backend scaling/clipping, enabling
reliable INT8 export without per-backend retraining.

Contributions.

• Robust Training with Fake Quantization. We introduce a progressive fake-quantization
curriculum that minimizes activation-induced errors across various deployment precisions,
preventing optimization collapse.

• Scale Management through Reverse Pruning. Our pin-at-boundary method effectively
mitigates weight outlier influence while preserving gradient flow and model capacity.

• Edge Efficiency Evaluation. We benchmark multiple edge devices (GPUs/SoCs/NPUs) and
quantify latency, power, and energy-per-inference, highlighting their promise for efficient
and greener AI deployment.

2 Background

Efficient deployment at the edge relies on numeric precision. Floating-point formats (FP32, FP16,
BF16) trade accuracy for bandwidth and energy, enabling scalable training and inference [29]. Integer
quantization (e.g., INT8/INT4) goes further by mapping tensors to fixed grids; with scale s and
zero-point z,

Q(x) = clip
(⌊

x/s
⌉
+ z, qmin, qmax

)
, x̂ = s (Q(x)− z),

typically using symmetric (z=0) weights and asymmetric activations [16, 20, 10]. Per-channel scales
often improve accuracy for conv/linear layers, but support varies by compiler.

Different hardware vendors ship black-box compilation and optimization algorithms tailored for their
hardware and hence come with varying constraints, e.g.:

• Per-channel / asymmetric kernels

• Mixed precision (tunable per layer)

• Operator support

• Post-training layer fusion

• Histogram observers

The hardware used in our evaluations is covered under section A.1 and section A.2. Many NPUs
require static INT8 for both weights and activations; GPUs allow mixed regimes (e.g., W8/A16) and
emerging low-FP formats (FP8) [18]. These differences mean the same FP checkpoint can yield
divergent low-bit accuracy across backends.

We seek a training-time procedure that produces a single checkpoint whose low-bit behavior is
stable under heterogeneous compiler choices (scaling, clipping, kernel availability), without backend-
specific graph edits. We base our approach on fake quantization (to align train-time forwards with
deployed integer numerics) and scale control via reverse pruning by compressing the range.

3 Methodology

In this section we introduce our Quant-Trim approach. It combines two key components. First is the
progressive fake quantization that smoothly interpolates between FP32 and low-bit execution to avoid
optimization collapse, and the reverse pruning step that pins extreme weights at the quantization
boundary to prevent a few values from inflating the scale while retaining representational power. The
Quant-Trim training workflow is depicted in fig. 1. In the following subsection we describe each step
in detail. Methods and earlier work that motivated our work are described in section 4.

2

Compiler/ Hardware side

Quant-trim

Export a single
checkpoint

Compiled and
Optimized Model

Compiler

Graph

Graph
Processing

Matching Kernels
and generating

IR

Mapper

Assembler

Bare Metal

Progressive Fake Quantization

FP32 DequantizeQuantize INT8 Blend

Blend Formula
Gradient

Flow (STE):

FP32 warmup

Reverse Pruning (Scale Control)

Weight Tensor Clip weightsCompute
Quantile

EMEA
Smoothing

Effect: Reduced scale inflation → Smaller step size

Figure 1: Quant-Trim training pipeline. Our method combines two key components: (1) Reverse
Pruning clips extreme weights at robust quantile thresholds τℓ,t to prevent scale inflation while
retaining representational power, and (2) Progressive Fake Quantization smoothly interpolates
between FP32 and INT8 execution via a curriculum schedule λt to avoid optimization collapse.
The blend coefficient gradually increases from 0 (full FP32 warmup) through a quartic ramp to 1
(full fake quantization), while computing per-tensor/channel scales and zero-points. Gradients flow
via straight-through estimator (STE). The final model exports to standard ONNX without custom
operators, ensuring compatibility with NPU compilers. The resulting model is then compiled to the
target AI accelerator.

3.1 Problem definition and notation

3.1.1 Uniform quantizer and STE.

For a tensor x and bit-width b = 8, we use a uniform fake quantizer with scale s > 0 and zero-point
z:

Qb(x; s, z) = clip
(⌊

x
s + z

⌉
, qmin, qmax

)
, x̂ = s

(
Qb(x; s, z)− z

)
,

where (qmin, qmax) = (−128, 127) for symmetric INT8 (weights) and (0, 255) for asymmetric
UINT8 (activations). We use the straight-through estimator (STE) [1, 14, 39]:

∂L
∂x
≈ ∂L

∂x̂
,

and perform progressive blending at each quantization point (i.e., every weight tensor and designated
activation location) with a strength λt ∈ [0, 1]:

x̃ = x + λt (x̂− x)stop-grad,

We use a single global blend coefficient λt shared across all quantization points at epoch t. Thus,
λt = 0 equals full FP32 precision and λt = 1 is full fake-quant in forward. The gradients always
follow FP32.

3.1.2 Robust statistics and tensor quantiles

Quantiles For a random variable X with CDF FX , the p-quantile is

QX(p) := F−1
X (p) = inf{x : FX(x) ≥ p}, p ∈ (0, 1).

Given samples x1:n with order statistics x(1)≤· · ·≤x(n), the empirical quantile is Q̂X(p) = x(⌈pn⌉).
For large tensors we compute Q̂ on a random subsample St, |St| ≤ Smax (we use Smax = 105). We
write phi, plo ∈ (0, 1) for upper/lower quantiles (e.g., phi = 0.999, plo = 0.001), µ ∈ (0, 1) for EMA
momentum (we use µ = 10−3), and ε > 0 (we use 10−6).

Per-tensor statistics Let b = 8. For weights (symmetric), with X = |w|,

mt = Q|w|(phi) (or Q̂(S)), m̃t = (1− µ) m̃t−1 + µmt,

3

s
(w)
t =

max(m̃t, ε)

2b−1 − 1
, z(w) = 0.

For activations (asymmetric),

at = Qx(plo), bt = Qx(phi), ãt = (1− µ) ãt−1 + µat, b̃t = (1− µ) b̃t−1 + µ bt,

s
(a)
t =

max(b̃t − ãt, ε)

2b − 1
, z

(a)
t = clip

(
− ãt

s
(a)
t

, qmin, qmax

)
.

The same definitions apply per-output channel c by replacing w with wc (or x with xc) and computing
Q|wc| (or Qxc

) along the channel axes; EMAs are then channel-wise.

3.2 Reverse Pruning (Scale Control)

Outlier weights inflate the effective scale. For layer ℓ with weights wℓ, let

τ̂ℓ,t = Q̂
(S)
|wℓ|(pclip) (e.g., pclip = 0.95), τℓ,t = (1− β) τℓ,t−1 + β τ̂ℓ,t,

with β ∈ (0, 1] an EMA momentum. Every K epochs after warmup we pin

wℓ ← clip
(
wℓ, −τℓ,t, τℓ,t

)
.

For symmetric quantization the post-pruning step size satisfies

∆′ =
τℓ,t

2b−1 − 1
< ∆ =

maxi |wℓ,i|
2b−1 − 1

,

allocating more representational levels to the bulk. Empirically, fig. 2 shows compressed weight tails
and narrower downstream activation ranges.

3.3 Training Curriculum

We schedule the global blend λt over epochs t and apply it at every quantization point:

λt =


0, t < Ew (FP32 warmup);

min
(
0.5,

(
t−Ew

Ef−Ew

)4 · 0.5), Ew ≤ t < Ef (gentle quartic ramp);

0.5 +
(
min

(
1,

t−Ef

H

))2
· 0.5, t ≥ Ef (quadratic to full).

Here Ew is warmup end, Ef is the end of the ramp, and H is the horizon to reach λt=1. At each
quantization point we compute x̂ using Qb(·) with current (st, zt) from the robust statistics above
and output x̃ = x+ λt(x̂− x)stop-grad; gradients use STE.

3.4 Training Procedure and Export

Putting it together:

1. FP32 warmup (0:Ew): train with λt=0.
2. Reverse pruning onset (t=Ew): start EMA thresholds τℓ,t; pin every K epochs.
3. Progressive fake-quant (Ew:Ef): enable fake-quant for weights (symmetric) and activa-

tions (asymmetric); update (st, zt) via robust EMA quantiles; blend with quartic λt.
4. Advanced/final (t ≥ Ef): quadratic ramp to λt=1; keep STE for stability.

We realize this via per-layer wrappers that (i) temporarily substitute quantized weights in forward
while keeping FP32 master weights for updates, and (ii) insert activation fake-quant hooks after
common nonlinearities. The final checkpoint is exported to ONNX and compiled with vendor
toolchains (TensorRT/TVM/NPU compilers); the computational graph remains standard (no fused
rescaling or non-standard formats).

4

3.5 Mechanism and Intuition

0.10 0.05 0.00 0.05 0.10
Weight Value

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Weight Distribution Comparison - conv1.weight

Original
Quant-trim

1.0 0.5 0.0 0.5 1.0
Activation Value

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

Activation Distribution Comparison - conv1

Original
Quant-trim

Figure 2: Distributional effect of Quant-Trim. Left: reverse pruning compresses weight tails,
reducing scale inflation. Right: activations exhibit a narrower dynamic range, making INT8 mapping
more stable.

Scale control. Pinning the largest p% weights reduces the extreme order statistics that set the
quantization scale, shrinking ∆ and allocating more representational levels to the bulk.

Smooth noise injection. The blend x̃ = x+ λt(x̂− x)stop-grad gradually aligns train-time forward
with deploy-time integer forward while the backward pass remains FP32-stable [1, 8], reducing the
distributional gap between FP32 and low-bit, as visualized in fig. 2.

4 Related Work

QAT and learned quantizers. Quantization-aware training enhances low-bit deployment by learn-
ing clip ranges and step sizes (PACT, LSQ) [3, 8]. Extensions target transformers and mixed regimes,
but accuracy can vary across compilers due to scale/zero-point handling and fusion rules [10].

PTQ and calibration sensitivity. Post-training methods reduce retraining cost but remain sensitive
to activation range estimation and small calibration sets (AdaRound, BRECQ) [30, 24]. Weight-only
routes help for LMs yet leave activation error unresolved (LLM.int8, AWQ, GPTQ) [5, 26, 9].

Activation outliers and distribution reshaping. A main failure mode is activation heavy tails
under A8/W8 and A4/W4. Smoothing or reassigning scale to weights reduces clipping/rounding
(SmoothQuant and variants) [37]. Rotation/dual-transform and low-rank absorption further reduce
tails for ultra-low bits [25, 28, 23]. Many rely on fused rescaling or side branches that are not
universally supported on edge NPUs.

Pruning for scale control. Classical magnitude pruning targets sparsity, not scale robustness.
Outlier-aware pruning prioritizes sensitive channels but is backend-specific [22, 38]. Our reverse
pruning focuses on tail pinning: clipping scale-setting weights to contract per-(tensor/channel) ranges
before fake-quant—keeping the exported graph standard.

Backend heterogeneity. Edge compilers differ in per-channel/asymmetric support, placement of
rescale ops, dynamic vs. static activation scaling, and allowed mixed-precision islands [16, 10]. This
leads to cross-backend variance from the same FP checkpoint and motivates training-time robustness
rather than backend-specific graph edits.

Regularization links. Bayesian/Laplace shrinkage can suppress heavy tails and improve sparsifia-
bility; it is complementary to our scale-control view [15, 4, 6].

5 Experiments

We present large-scale optimization and experiments across multiple hardware platforms, tasks, and
models to quantify NPU efficiency and the impact of varying numerical precision on devices that

5

support multiple precisions. The experimental pipeline is detailed in section A. We also provide
comprehensive hardware descriptions and specifications to contextualize the results under section A.2
and to make explicit the limitations of each platform and conduct an ablation study on the effect of
Quant-Trim components in section B. Device capabilities are summarized in table 6.We then show
the stability of the training results and the effect of our method on the end quantization results on the
accelerators.

0 200 400 600 800 1000 1200 1400
Frames per Second (FPS)

101

102

Pe
ak

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Dinov2_meta Performance (Input: 1x3x224x224)

AI-Accelerator
Ryzen 9 5900X
GeForce RTX 3090
Hardware A

Core i7-1370P
Orin Nano

AGX Orin
RK3588 NPU

Precision
@INT8
@FP16
@FP32

Runtime
Native TensorRT

0 500 1000 1500 2000 2500
Frames per Second (FPS)

101

102

Pe
ak

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Resnet50 Performance (Input: 1x3x224x224)

AI-Accelerator
Ryzen 9 5900X
GeForce RTX 3090
Hardware A

Core i7-1370P
Orin Nano
AGX Orin

RK3588 NPU
Hardware B
Hardware D

Precision
@INT8
@FP16
@FP32

Runtime
Native TensorRT

Figure 3: Power–throughput trade-off for DINOv2 and ResNet-50. Batch=1, 224×224 input.
x-axis: median FPS over 200 timed iters after 20 warm-ups; y-axis: average Peak-power (5 runs;
whiskers show 5–95th percentiles). Encoding: color = device; marker shape = precision; filled
markers = platform’s default runtime (NPUs: vendor runtime; NVIDIA: CUDA), unfilled markers =
TensorRT. Left: DINOv2; Right: ResNet-50. Device specs in table 6.

0 10 20 30 40 50
Epoch

78

80

82

84

86

88

Te
st

 A
cc

ur
ac

y
(%

)

DINOv2 CIFAR-100: Test Accuracy vs Epoch (mean ± 1 s.d.)

Quant-Trim
Quant-Trim (±1 s.d.)
Baseline
Baseline (±1 s.d.)

(a) Top-1 accuracy (Quant-Trim vs. MAP).

0 10 20 30 40 50
Epoch

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Te
st

 L
os

s

DINOv2 CIFAR-100: Test Loss vs Epoch (mean ± 1 s.d.)

Quant-Trim
Quant-Trim (±1 s.d.)
Baseline
Baseline (±1 s.d.)

(b) Test loss (Quant-Trim vs. MAP).

Figure 4: Training dynamics on CIFAR-100 (DINOv2). A small accuracy dip during the ramp
phase is followed by convergence to MAP-level performance.

5.1 Inference Results and Efficiency

Within the same hardware, lower precision yields faster speeds. For NVIDIA GPUs and embedded
Jetson devices, TensorRT gives a significant boost compared to using CUDA kernels. In general,
for the shown models, the requirements to perform real-time tasks are slightly beyond 60 FPS to
be able to build on top and take into consideration the latency that comes from data processing and
sensor systems. We provide technical details about the system and the potential latency added for end
deployment under section A.1.

Power Consumption vs Precision NPUs’ energy consumption is very low in comparison to
NVIDIA GPUs, which can pull up to 200 W, while NPUs do not exceed 10 W. Hardware that
supports different precision like the Jetson family and GPU are 2 to 3 times faster at lower precision
compared to FP32 for both ResNet-50 and DINOv2. The Power Consumption is measured on chip.

Runtime Provider Within the same hardware, we can see that for NVIDIA hardware (GPU and
Jetson), TensorRT provides a large speedup for FP16, nearly tripling the speed of DINOv2 from 600

6

FPS to over 1500 FPS as shown in fig. 3.Additional results for U-Net [33] and MobileNetV3-Small
[13] are shown in fig. 11.

5.2 Training dynamics

0 10 20 30 40 50
Epoch

0

10

20

30

40

50

60
Ac

cu
ra

cy
 (%

)

Test Accuracy vs Epoch

0 10 20 30 40 50
Epoch

2

3

4

5

6

7

Lo
ss

Test Loss vs Epoch

0 100 200 300 400 500 600
Step

0.15

0.20

0.25

0.30

Av
g

W
ei

gh
t R

an
ge

Avg Weight Range vs Step

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

St
re

ng
th

Quantization Strength vs Epoch

Quant-Trim Baseline

Figure 5: Quant-Trim exhibits a brief dip when fake-quantization ramps in, then recovers to near-
baseline accuracy and loss by the end of training for ResNet on CIFAR-100.

Training dynamics & convergence. Similar to MAP training, Quant-Trim leads to full convergence
at the end of training and similar predictive performance. Training stabilizes, ensuring progressive
quantization with a slight drop once we start the fake-quantization process, but regains near complete
accuracy by the end of training for ResNet-50 and DINOv2 as shown respectively in fig. 5 and fig. 4.
A similar trend is seen for ResNet-18 on Coco as shown in fig. 10.

Figure 6: NanoSAM2 distillation with Quant-Trim. For two inputs (left in each subfigure), the
student’s deepest FPN feature matches the teacher’s saliency structure while exhibiting fewer saturated
patches after reverse pruning.

Feature alignment (NanoSAM2). We distill a compact NanoSAM2 image encoder from SAM-
2.1 Hiera inspired by the nanosam recipe1, adapted to SAM-2.1 and our Quant-Trim curriculum
(section 3). Distillation minimizes a three-scale FPN loss (Huber; weights [1, 1

4 ,
1
8]) between teacher

and student features, while Quant-Trim runs on the student to align training numerics with INT
deployment. NanoSam2 reaches an mIOU of 0.5889 on the Coco 20217 validation set [27]. Fig. 6
shows representative cases: the student reproduces the teacher’s saliency structure (object contours,
part boundaries) without high-frequency artifacts, and reverse pruning suppresses rare saturated
responses that otherwise inflate activation ranges. Qualitatively, the feature maps remain sharp at
object edges and smooth in background regions, indicating that Quant-Trim preserves the inductive
content required for mask decoding while preparing the checkpoint for NPU compilers. As shown in

1https://github.com/NVIDIA-AI-IOT/nanosam

7

https://github.com/NVIDIA-AI-IOT/nanosam

Method Top-1 Top-5 MSE↓ Brier↓ ECE↓

Quant-Trim 65.10 (64.60) 86.90 (86.80) 0.01601 0.54295 (0.55070) 0.19791 (0.19966)
MAP 62.70 (62.30) 85.70 (85.80) 0.02110 0.56826 (0.57182) 0.22860 (0.23226)

Table 2: ResNet-50 on CIFAR-100, Hardware D. Entries are On-Device; ONNX (FP32) references
are in parentheses. MSE is computed as the mean squared difference between device and ONNX
logits (pre-softmax). Average FPS: 571, IP execution time: 1.5 ms

fig. 7, NanoSAM2–ResNet-18 reaches real-time latencies on specialized NPUs at single-digit watts,
surpassing a desktop FP16 GPU baseline in our setting. Implementation note: the image encoder
(dominant compute) runs on the NPU, while the lightweight prompt decoder runs on the host CPU.

0 100 200 300 400
Frames per Second (FPS)

101

102

Pe
ak

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Nanosam2-Resnet18 Performance (Input: 1x3x512x512)

AI-Accelerator
Ryzen 9 5900X
GeForce RTX 3090

Hardware A
Core i7-1370P

Orin Nano
AGX Orin

Precision
@INT8
@FP16
@FP32

Runtime
Native TensorRT

Figure 7: End-to-end inference for NanoSAM2–ResNet-18 across accelerators. Single-image,
batch=1, 512×512 input; tiled inference with 50% overlap when required. Results are averaged across
runs and warmup runs are used for each hardware. Runtimes use TensorRT (FP16) on GPU/Jetson
and vendor runtimes on NPUs (INT8 or BF16/INT as supported). Hardware A, which uses A8W8, is
6 times faster than the Jetson family hardware and faster than the desktop GPU at an FP16 baseline
while operating at single-digit watts (about 5 W).

5.3 On-Device Deployment

Method Top-1 Top-5 MSE↓ Brier↓ ECE↓

Quant-Trim 64.60 (64.60) 86.80 (86.80) 0.01344 0.55235 (0.55070) 0.19821 (0.19966)
MAP 64.30 (62.30) 86.60 (85.80) 0.03987 0.57446 (0.57182) 0.22984 (0.23226)

Table 1: ResNet-50 on CIFAR-100, Hardware B(INT8 weights, BF16 activations). Over 500 frames
average FPS: 834.18 and average System Latency: 5.34 ms. Entries are On-Device; FP32 values are
in parentheses. Quant-Trim improves Top-1 by +2.3 pts and cuts MSE by ∼66% vs. MAP, with near
FP32–device parity across metrics.

8

Beyond accuracy (MSE and calibration). We quantify backend drift using the mean squared error
(MSE) between logits (pre-softmax scores) produced on-device and by the ONNX FP32 reference:
MSE = 1

N

∑
i∥device_logitsi − onnx_logitsi∥22. On Hardware B, Quant-Trim cuts logit MSE

from 0.03987 (MAP) to 0.01344 (↓∼ 66%), with improved calibration (Brier 0.57446→ 0.55235,
↓∼ 3.8%; ECE 0.22984→0.19821, ↓∼ 13.7%) and a small Top-1 gain (+0.3 pts), see table 1. On
Hardware D, Quant-Trim similarly reduces logit MSE from 0.021 to 0.016 (↓∼ 24.2%) and improves
calibration (Brier 0.56826→0.54295, ↓∼ 4.5%; ECE 0.22860→0.19791, ↓∼ 13.4%) while adding
+2.4 Top-1 pts; see table 2. In both cases, lower MSE indicates closer numerical agreement to the
FP32 reference at the logit level (before probabilities are formed), and lower Brier/ECE reflect better
probability calibration. For ResNets used as a feature backbone, the lower MSE also signals higher
backbone signal fidelity, which helps keep the encoder usable for downstream heads and distillation
targets—especially relevant on the edge where ResNet backbones commonly distil or interface with
Vision Transformer (ViT) backbones in architectures like DETR, SAM and CLIP [7, 2, 19, 32].

Signal-to-Noise Ratio (SNR) We show in table 3 that Quant-Trim demonstrates superior signal
fidelity during deployment on Hardware A, achieving an SNR of 43.12 on the output layer, even
with only calibration enabled. In contrast, models trained using MAP, augmented with hardware-
based optimization techniques like Equalization and Adaround (which require additional overhead),
achieve a lower SNR of 34.3. This highlights Quant-Trim’s ability to maintain higher signal quality
without the need for extensive post-training adjustments, ensuring robust deployment across hardware
platforms

Training Method SNR (Output Layer) Training Details

Quant-Trim (Calibration Only) 43.12 no additional fine-tuning
Baseline (Equalization + Adaround [30]) 34.30 320 epochs, 256 images, all layers quantized

Table 3: Comparison of Signal-to-Noise Ratio (SNR) on the output layer of ResNet-50 for Hardware A
(A8W8 INT). Quant-Trim achieves significantly higher SNR with only calibration enabled compared
to the baseline trained with Equalization + Adaround over 320 epochs.

6 Conclusion

We presented Quant-Trim, a training-time procedure that couples progressive fake quantization with
reverse pruning to produce a single, hardware-agnostic checkpoint. Across CNNs and transformers,
Quant-Trim narrows the FP→INT gap, stabilizes training despite activation outliers, and reduces
sensitivity to backend scaling, clipping, and operator coverage. On edge accelerators, the same
checkpoint compiles reliably and delivers favorable latency/energy trade-offs without per-backend
retraining or concrete graph edits. We further demonstrated practicality with NanoSAM2, showing
on-device throughput gains while retaining accuracy. Future work will extend the evaluation to larger
datasets and models.

Limitations This work highlights a promising approach to optimizing neural networks for post-
training quantization from the compiler’s perspective. It is important to note that this is a work
in progress. One challenge we are addressing separately is the deployability of these networks
on specific hardware, as some architectures may not be suitable yet for deployment. The vendors
and hardware that we tested are initially designed for particular architectures. Vendors are actively
working to improve support for transformer architectures. Some vendors have either released custom
hardware primarily suited for generative AI workloads, others are adjusting their compilers for
enhanced compatibility, showing the promise of Edge Deployment. Our goal is not to compare one
device to another but rather improve the deployment results for each hardware as selecting a specific
NPU for an application highly depends on the task at hand, operation support and the size of the
graph. We are committed to advancing efficient green AI solutions. While our approach is primarily
designed to meet stringent real-world application requirements, it also scales up to GPU levels. With
further tweaking and optimization, we can reduce the footprint of larger GPUs. Future evaluations on
larger datasets will enhance this work, as we are currently addressing both training and inference; the
experiment load is massive, thus we will include a broader evaluation in a future version.

9

References
[1] Y. Bengio, N. Léonard, and A. Courville. Estimating or propagating gradients through stochastic

neurons. arXiv preprint arXiv:1305.2982, 2013.

[2] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-end
object detection with transformers. In European Conference on Computer Vision (ECCV), pages
213–229. Springer, 2020.

[3] J. Choi, Z. Wang, S. Venkataramani, P. Chuang, V. Srinivasan, and K. Gopalakrishnan. PACT:
Parameterized clipping activation for quantized neural networks. In International Conference
on Learning Representations (ICLR) Workshop, 2018.

[4] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hennig. Laplace redux:
Effortless bayesian deep learning. In NeurIPS, 2021.

[5] T. Dettmers, M. Lewis, S. Shleifer, and L. Zettlemoyer. Llm.int8(): 8-bit matrix multiplication
for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

[6] R. Dhahri, A. Immer, B. Charpentier, S. Günnemann, and V. Fortuin. Shaving weights with
occam’s razor: Bayesian sparsification for neural networks using the marginal likelihood. In
Advances in Neural Information Processing Systems (NeurIPS), 2024.

[7] A. Dosovitskiy et al. An image is worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2020.

[8] S. K. Esser, J. L. McKinstry, V. Bablani, R. Appuswamy, and D. S. Modha. Learned step size
quantization. In International Conference on Learning Representations (ICLR), 2020.

[9] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh. Gptq: Accurate post-training quantization
for generative pre-trained transformers, 2023.

[10] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. Mahoney, and K. Keutzer. A survey of quantization
methods for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2022.

[11] A. Gholami, S. Kim, Z. Dong, Z. D. Yao, M. W. Mahoney, and K. Keutzer. A survey of
quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630,
2021.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR,
2016.

[13] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, R. Pang,
V. Vasudevan, Q. V. Le, and H. Adam. Searching for MobileNetV3. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV), pages 1314–1324, 2019.

[14] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized neural networks:
Training neural networks with low precision weights and activations. In JMLR, 2017.

[15] A. Immer, M. Bauer, V. Fortuin, and G. Rätsch. Scalable marginal likelihood estimation for
model selection in deep learning. In ICML, 2021.

[16] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko.
Quantization and training of neural networks for efficient integer-arithmetic-only inference. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 2704–2713,
2018.

[17] D. Kalamkar, D. Mudigere, J. Wang, H. Yuen, P. van Beek, S. Sridharan, M. Smelyanskiy, and
D. Das. A study of bfloat16 for deep learning training. In arXiv preprint arXiv:1905.12322,
2019.

[18] Y. Kim, P. Micikevicius, D. Masters, B. Ginsburg, et al. FP8 formats for deep learning. arXiv
preprint arXiv:2209.05433, 2023.

10

[19] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C.
Berg, W.-Y. Lo, P. Dollár, and R. Girshick. Segment anything, 2023.

[20] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepa-
per. In arXiv preprint arXiv:1806.08342, 2018.

[21] A. Krizhevsky. Learning multiple layers of features from tiny images. Technical report,
University of Toronto, 2009.

[22] C. Lee, J. Jin, T. Kim, H. Kim, and E. Park. OWQ: Outlier-aware weight quantization for
efficient fine-tuning and inference of large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, number 12, pages 13355–13364, 2024.

[23] M. Li, Y. Lin, Z. Zhang, T. Cai, X. Li, J. Guo, E. Xie, C. Meng, J.-Y. Zhu, and S. Han.
Svdquant: Absorbing outliers by low-rank components for 4-bit diffusion models. arXiv
preprint arXiv:2411.05007, 2024.

[24] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and S. Gu. Brecq: Pushing
the limit of post-training quantization by block reconstruction, 2021.

[25] H. Lin, H. Xu, Y. Wu, J. Cui, Y. Zhang, L. Mou, L. Song, Z. Sun, and Y. Wei. Duquant:
Distributing outliers via dual transformation makes stronger quantized llms, 2024.

[26] S. Lin, E. Frantar, M. Kurtz, P. Stock, and D. Alistarh. Awq: Activation-aware weight quantiza-
tion for llms. arXiv preprint arXiv:2306.00978, 2023.

[27] T.-Y. Lin et al. Microsoft coco: Common objects in context. In ECCV, 2014.

[28] L. Liu, H. Wu, Y. Wang, H. Xu, G. Lin, Y. Wei, and Z. Sun. Rotated runtime smooth: Training-
free activation smoothing for accurate int4 inference. arXiv preprint arXiv:2409.20361, 2024.

[29] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia, B. Ginsburg, S. Houston,
O. Kuchaiev, G. Venkatesh, and H. Wu. Mixed precision training. In International Conference
on Learning Representations (ICLR), 2018.

[30] M. Nagel, M. Van Baalen, T. Blankevoort, and M. Welling. Up or down? adaptive rounding for
post-training quantization. In International Conference on Machine Learning (ICML), pages
7197–7206, 2020.

[31] M. Oquab et al. Dinov2: Learning robust visual features without supervision. arXiv:2304.07193,
2023.

[32] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from
natural language supervision. In Proceedings of the 38th International Conference on Machine
Learning (ICML), volume 139 of Proceedings of Machine Learning Research, pages 8748–8763.
PMLR, 2021.

[33] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and Computer-Assisted Intervention (MICCAI),
volume 9351 of Lecture Notes in Computer Science, pages 234–241. Springer, 2015.

[34] I. O. Team. Openvino post-training optimization tool, 2023. https://docs.openvino.ai/
latest/pot_introduction.html.

[35] N. T. Team. Nvidia tensorrt: Int8 calibration, 2023. https://docs.nvidia.com/
deeplearning/tensorrt/developer-guide/index.html#int8-calibration.

[36] T. L. Team. Tensorflow lite: Post-training quantization, 2023. https://www.tensorflow.
org/lite/performance/post_training_quantization.

[37] W. Xiao, E. Frantar, P. Stock, E. Elsen, M. Kurtz, and D. Alistarh. Smoothquant: Accurate and
efficient post-training quantization for large language models. arXiv preprint arXiv:2211.10438,
2022.

11

https://docs.openvino.ai/latest/pot_introduction.html
https://docs.openvino.ai/latest/pot_introduction.html
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#int8-calibration
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#int8-calibration
https://www.tensorflow.org/lite/performance/post_training_quantization
https://www.tensorflow.org/lite/performance/post_training_quantization

[38] L. Yin, Y. Wu, Z. Zhang, C.-Y. Hsieh, Y. Wang, Y. Jia, M. Pechenizkiy, Y. Liang, M. Bendersky,
Z. Wang, and S. Liu. OWL: Outlier weighed layerwise sparsity — a missing secret sauce for
pruning llms to high sparsity. In Proceedings of the International Conference on Machine
Learning (ICML), volume 235 of Proceedings of Machine Learning Research, pages 57101–
57115, 2024.

[39] P. Yin, J. Lyu, S. Zhang, S. Osher, Y. Qi, and J. Xin. Understanding straight-through estimator
in training activation quantized neural nets, 2019.

12

A Experimental Setup

A.1 Hardware Platforms

The performance and accuracy of a quantized model are fundamentally tied to the capabilities of the
target hardware, including its supported precisions, compiler toolchain, and supported operations. To
evaluate the robustness of our method, we benchmark across two distinct classes of edge devices:
versatile embedded GPUs and specialized AI accelerators (NPUs).

• Embedded GPUs: We use NVIDIA’s Jetson Nano and Jetson AGX Orin. These platforms
offer general-purpose CUDA and Tensor Core acceleration with broad support for FP32,
FP16, and INT8. Their compilers (e.g., TensorRT) provide significant flexibility, including
support for dynamic quantization, where activation scales are computed on-the-fly. This
adapts to varying input data distributions but can introduce runtime overhead.

• Specialized NPUs: We benchmark on three representative edge AI accelerators anonymized
as Hardware A, B, and C and provide their specifications. These ASICs are optimized
for high-throughput, low-power inference, primarily supporting aggressive INT8 (even
INT4) quantization, while it is possible to set some layers to INT16; that might risk not
fitting into the memory. Their toolchains are often more restrictive and typically rely on
static quantization, where activation ranges are pre-calibrated offline using a representative
dataset. This minimizes runtime computation but makes model performance highly sensitive
to the calibration data and potential distribution shifts during deployment.

Device Type W/A path Act. scaling @ inference PTQ calib. (INT)

Jetson Nano SoC (GPU) W8/A8 or W8/A16 STATIC (INT) or QAT Cond.
Jetson AGX Orin SoC (GPU) W8/A8, W8/A16 STATIC (INT) or QAT Cond.
Hardware A M.2 NPU W8/A8 (INT8) STATIC (no runtime dyn) Yes
Hardware D M.2/PCIe NPU W8/A8 (INT8) or BF16 STATIC (compiler-provided) No
RK3588 (RKNN) SoC (NPU) W8/A8 or FP16 STATIC (INT8 only) Cond.
Hardware B M.2 NPU W8/ABF16 (hybrid) N/A (A=BF16) No

Table 4: Quantization behavior (corrected). W/A path denotes weight/activation precisions at
inference. Act. scaling: STATIC = fixed/static activation ranges used by the backend (may come from
compiler defaults or embedded QAT scales); QAT = scales learned during QAT and embedded in the
graph. PTQ calib. (INT) indicates whether a representative dataset is required when an INT mode is
selected. For RK3588, calibration is Cond.: required for INT8, not for FP16 or BF16.

A.2 Hardware Form Factors and Practical Advantages

Edge accelerators appear in two dominant forms:

• Add-in NPUs (M.2 / PCIe, USB). Examples include Hardware A(M.2 B/M-key), Hardware
B(M.2), and Hardware D(M.2/PCIe variants). These modules attach to a host (x86/ARM
SBC, laptop, or embedded carrier) over PCIe (or occasionally USB). The host handles
I/O, pre/post-processing, and scheduling; the NPU executes the neural network graph.
Advantages: drop-in acceleration for existing systems, low incremental power (single-digit
watts), and flexible host software. Caveats: host–device transfers (DMA), graph partitioning,
and op coverage can introduce tail latency if unsupported ops fall back to the host.

• System-on-Chip (SoC) platforms. Examples include NVIDIA Jetson (Orin family) and
Rockchip RK3588 boards. These integrate CPU, GPU/NPU, DRAM, and peripherals on
one module; the full application stack (capture, pre/post, model, control) runs on-device.
Advantages: single box, deterministic I/O, simpler memory topology, and easy CPU fallback
for unsupported ops. Caveats: total power headroom is fixed; thermal throttling and shared
memory bandwidth must be managed.

13

Form factor Typical link Strengths Watch-outs

M.2 / PCIe NPU PCIe Gen3/4 x2–x4 Drop-in accel; low watts; scalable PCIe copies; op coverage; host fallbacks
USB NPU stick USB 3.x Quick prototyping; portable Higher copy overhead; limited bandwidth
SoC (Jetson) On-package MMU/DRAM Unified memory; full stack on device Thermal/power budgets; shared BW
SoC (RK3588) On-package MMU/DRAM Low cost; rich I/O Compiler maturity; INT-centric kernels

Table 5: Form factors, data links, and common trade-offs at the edge.

Accelerator Form factor / Interface Peak perf. Typical power

Hardware A† M.2 2280 (B/M); PCIe Gen3 x2 26 TOPS (INT8) ∼2.5 W
Hardware B‡ Chip (PCIe Gen3 x4 / USB3); M.2 module 6 TOPS/chip (INT8) 0.5–2 W/chip
Hardware D§ Low-profile PCIe; Gen3 x8 60 TOPS (INT8) 8–10 W

Table 6: Edge NPU summary (TOPS & typical power). Vendor-quoted peak performance; INT8
unless noted. Symbols: † Hardware Auses on-chip SRAM only (no external DRAM); ‡ Hardware
Bnumbers are per chip (M.2 module aggregates 4 chips, up to ∼24 TOPS); § Hardware Dalso reports
∼30 TFLOPS (BF16), typical 8–10 W.

Operator support and fallbacks. Add-in NPUs excel when the compiled graph maps entirely
to accelerator kernels. If a layer is unsupported (or precision constraints force a dequant–requant
island), the compiler will in some cases route that subgraph to the host CPU/GPU; it is also possible
to crop and run only a subgraph on the NPU if the issue is only in the pre- or post-processing layers.
This is functionally correct but may introduce large latency spikes due to extra memory traffic and
synchronization. SoCs tolerate such cases better (same memory space, no PCIe), though overall
throughput may be lower.

Pre/post-processing placement. Lightweight steps (resize, normalization, tiling) should run where
they minimize copies: on SoCs, prefer GPU/NPU-side ops with zero-copy buffers; on M.2 NPUs,
batch/pack on the host, transfer once, and fuse post-ops into the compiled graph where supported. In
both cases, avoid alternating host–device–host hops in the critical path.

Memory and bandwidth. Edge NPUs rely on on-chip SRAM and tiling to maintain high
reuse; DRAM is accessed in bursts. Sustained performance is determined as much by dataflow
(blocking/tiling, operator fusion, quantized layout) as by peak TOPS. SoCs share DRAM across
CPU/GPU/NPU, so contention and cache policy can affect tail latency; pinning cores and using
contiguous DMA buffers often helps.

A.3 Appendix: Hyperparameters and Metrics

Reverse pruning: every K epochs, clip weights to the pclip percentile (per-tensor or per-channel).
Running ranges use EMA with momentum µ.

Measurement protocol. Inference: 20 warmup + 200 timed iterations; medians over 5 runs.
Training: medians over 3 random seeds.

Table 8: Architecture-specific tweaks.

ResNet (CNN) DINOv2 (Transformer)

LR / warmup higher LR; shorter Ew (10–30) lower LR; longer Ew (30–50)
Ramp length Ef 30–50 60–100
pclip / K 0.90–0.95 / 5 0.96–0.98 / 15
EMA µ 10−3–10−2 10−4–10−3

Attention handling n/a Q/K/V and outputs fake-quant; keep scores in FP
Final blend cap αmax=1.0 αmax≈0.8

14

Table 7: Minimal QAT defaults by task/dataset.

CIFAR-100 Segm. (COCO)

Epochs / Batch 100 / 128 100 / 32
Optimizer / LR AdamW / 3×10−4 AdamW / 5×10−4

Weight decay 0.01 1×10−4

LR schedule Cosine Cosine
Ew, Ef , H 10, 50, 20 15, 30, 20
pclip / K 0.90 / 5 0.95 / 5
EMA µ 10−2 10−3

Target precision INT8 (W/A) INT8 (W/A)

Metrics (reported). Classification: Top-1/Top-5. Segmentation: mean Intersection over Union
(mIoU), with mIoU = 1

N

∑N
i=1 IoUi = 1

N

∑N
i=1

|Ai∩Bi|
|Ai∪Bi| Calibration/robustness: ECE, MSE

(logits). Efficiency: FPS, average power (W).

A.4 Models

To ensure robustness across architectures, we evaluate:

• ResNet-50 and ResNet-18 [12]: canonical CNN backbone with residual connections.

• NanoSAM2: SAM variant with a ResNet-18 backbone; we use knowledge distillation to
train the model on COCO.

• DINOv2 [31]: self-supervised vision transformer trained on large-scale data, challenging to
quantize.

A.5 Datasets

We evaluate on:

• CIFAR-100 [21]: 100-class dataset of tiny natural images (32×32). Serves as a proxy for
classification robustness under quantization.

• MS-COCO [27]: large-scale benchmark for detection and segmentation. Stress-tests
activation quantization due to varied input scales and long-tail distribution.

• CIFAR-10 [21]: Used for ablations due to its lightweight compute footprint, enabling rapid
sweeps over clipping percentiles and fake-quant schedules.

B Ablation Study: Quantization Components and Clipping Sensitivity

We conduct a systematic ablation study on ResNet-18 with CIFAR-10 to isolate the contributions
of different quantization components in our framework. The study evaluates five experimental
configurations to understand the individual and combined effects of fake quantization training and
reverse pruning (outlier weight removal). The experimental setup is described in table 9. The five
configurations isolate the role of our fake-quantization and reverse pruning ; all share identical
optimizer and schedule.

Our experiment reveals that on the training level, all ablation configurations converge to similar
validation accuracy (≈81%) despite varying quantization strategies and clipping thresholds (90%,
95%, 99%) as seen in fig. 8. The convergence of both the FP32 baseline and pruning-only variant
to comparable performance levels demonstrates that our progressive quantization strength schedule
λ effectively maintains model capacity across diverse compression approaches. This robustness to
hyperparameter choices validates the stability of the quantization-aware training framework and
suggests that the specific clipping threshold has minimal impact on final model performance. In

15

Config Fake-Quant (INT8) Reverse-Pruning pclip Epochs Notes

(1) FP32 Baseline ✗ ✗ – 50 Standard full-precision training
(2) QAT Only ✓ ✗ – 50 INT8 fake-quantization; RP disabled
(3) Reverse Pruning Only ✗ ✓ 95% 50 FP32 training with percentile clipping
(4) QAT + 90% Clipping ✓ ✓ 90% 50 Aggressive outlier removal
(5) QAT + 99% Clipping ✓ ✓ 99% 50 Conservative outlier removal

Table 9: Ablation configurations for ResNet-18 on CIFAR-10. Shared hyperparameters across all
runs: SGD optimizer, learning rate 10−3, weight decay 5×10−4, 50 epochs, and n=3 seeds. Only
quantization settings differ between rows.

0 10 20 30 40 50
Epoch

40

50

60

70

80

Va
l A

cc
ur

ac
y

(%
)

Val Accuracy vs Epoch

Baseline (FP32)
QAT Aggressive (clip 90%)
QAT Standard (clip 95%)
QAT Conservative (clip 99%)
Pruning Only (no QAT)

0 10 20 30 40 50
Epoch

0.6

0.8

1.0

1.2

1.4

1.6

Va
l L

os
s

Val Loss vs Epoch

Baseline (FP32)
QAT Aggressive (clip 90%)
QAT Standard (clip 95%)
QAT Conservative (clip 99%)
Pruning Only (no QAT)

0.0 0.5 1.0 1.0
Quantization Strength

0.0 0.5 1.0 1.0
Quantization Strength

ResNet-18 CIFAR-10 Ablation Study (mean ± 1 s.d. across seeds)

Figure 8: Ablation study on ResNet-18 CIFAR-10 shows convergence to similar accuracy across
configurations. (Left) Validation accuracy versus training epoch. Despite varying quantization strate-
gies (aggressive clip 90%, standard clip 95%, conservative clip 99%) and the baseline FP32 model, all
configurations converge to approximately 81% validation accuracy by epoch 50, demonstrating that
the quantization strength schedule λ (top axis) does not significantly impact final model performance.
(Right) Validation loss follows a consistent downward trend across all methods, further confirming
stable convergence behavior. The pruning-only baseline (no QAT) achieves comparable performance,
suggesting that the learned representations are robust to different compression approaches. Shaded
regions indicate ±1 standard deviation across 3 random seeds per configuration.

addition in fig. 9, We can see based on the activation distribution that for our QAT approach paired
with reverse pruning at 95% results in a smoother activation distribution that is easier to quantize and
with less outliers.

C Pseudo code

Algorithm 1 Quant-Trim Training

1: Initialize weights w(0) in FP32
2: for epoch t = 1, . . . , T do
3: if t = Ew then
4: Reverse prune (all ℓ): wℓ ← clip(wℓ,−τℓ,t, τℓ,t) with τℓ,t = (1−β)τℓ,t−1 +β Q̂

(S)
|wℓ|(pclip)

5: end if
6: Update robust stats (s(w)

t , z(w)=0) and (s
(a)
t , z

(a)
t) via EMA percentiles

7: Set λt by the schedule above
8: Fake-quant forward: ŵ = Qb(w; s

(w)
t , 0), x̂ = Qb(x; s

(a)
t , z

(a)
t), output x̃ = x + λt(x̂ −

x)stop-grad
9: Backprop with STE on FP32 master weights

10: end for
11: Export checkpoint→ ONNX (compile with TensorRT/TVM/NPU compilers)

16

3 2 1 0 1 2

Activation Value

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

D
en

si
ty

Activation Distribution Comparison - layer1.1.conv1
Baseline (FP32)
Reverse Pruning Only (No QAT)
QAT + 90% Clipping (Aggressive)
QAT + 95% Clipping (Moderate)
QAT + 99% Clipping (Conservative)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Activation Value

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
en

si
ty

Activation Distribution Comparison - layer1.0.conv2
Baseline (FP32)
Reverse Pruning Only (No QAT)
QAT + 90% Clipping (Aggressive)
QAT + 95% Clipping (Moderate)
QAT + 99% Clipping (Conservative)

Figure 9: Weight distribution comparison across ablation study configurations for ResNet-18
on CIFAR-10. The baseline FP32 model (black) exhibits the widest weight distribution, while
quantization-aware training introduces characteristic distribution narrowing. Reverse pruning alone
(green dash-dot) provides regularization effects visible as distribution tightening around zero. The
combination of QAT with different clipping percentiles reveals the trade-off between outlier removal
and weight preservation: aggressive 90% clipping (red dotted) creates the most constrained distribu-
tion, while conservative 99% clipping (blue) maintains broader weight ranges and 95% being the
sweet spot (purple) where it is observed in a low MSE of 0.00023 between compiled model and FP32
predictions on Hardware B.

0 10 20 30 40 50
Epoch

23

24

25

26

27

28

Va
l m

Io
U

 (%
)

Val mIoU vs Epoch

Quant-Trim
Baseline

0 10 20 30 40 50
Epoch

76

77

78

79

80

Va
l P

ix
el

 A
cc

ur
ac

y
(%

)

Val Pixel Accuracy vs Epoch

Quant-Trim
Baseline

0.0 0.5 1.0 1.0 1.0 1.0
Quantization Strength

0.0 0.5 1.0 1.0 1.0 1.0
Quantization Strength

ResNet-18 COCO Segmentation (smoothed, mean ± 1 s.d.)

Figure 10: ResNet-18 COCO Segmentation: Val mIoU and Pixel Accuracy vs Epoch

D Additional Results

Hardware Type Price Peak Power (W) Runtime env (ACC) Runtime (s) Price per Watt (C)

RTX 3090 (comparison) GPU 1500C 190 TensorRT (FP16) 0.12 0.127
Jetson Orin Nano 8 GB SOM 250C 10 TensorRT (FP16) 0.66 0.040
Hardware A M.2 Mod. 150C 5 (INT8) 0.10 0.033
Hardware B M.2 Mod. 125C 5 (BF16) 0.60 0.040
Hardware C Full SoC 250C 8 (INT/FP16) 3.50 0.032
Hardware D M.2 Mod. 350C 8 (INT/FP16) 0.76 0.023

Table 10: NanoSAM2 backbone runtime for one 2k×2k image (50 tiles). We report backbone
latency only; the lightweight decoder runs on CPU. Images larger than 1024 px are processed by tiled
inference (512×512 tiles with 50% overlap).

17

500 1000 1500 2000 2500 3000
Frames per Second (FPS)

101

102

Pe
ak

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

MobilenetV3s Performance (Input: 1x3x224x224)

0 100 200 300 400 500 600
Frames per Second (FPS)

101

102

Pe
ak

 P
ow

er
 C

on
su

m
pt

io
n

(W
)

Unet Performance (Input: 1x3x512x512)

AI-Accelerator
Ryzen 9 5900X
GeForce RTX 3090

Hardware A
Core i7-1370P

Orin Nano
AGX Xavier Volta

HardwareASOC
AGX Orin

RK3588 NPU
Hardware B

Precision
@INT8 @FP16 @FP32

Runtime
Native TensorRT

Figure 11: Performance and power consumption comparison across different AI accelerators for
MobileNetV3s and U-Net models.

18

	Introduction
	Background
	Methodology
	Problem definition and notation
	Uniform quantizer and STE.
	Robust statistics and tensor quantiles

	Reverse Pruning (Scale Control)
	Training Curriculum
	Training Procedure and Export
	Mechanism and Intuition

	Related Work
	Experiments
	Inference Results and Efficiency
	Training dynamics
	On-Device Deployment

	Conclusion
	Experimental Setup
	Hardware Platforms
	Hardware Form Factors and Practical Advantages
	Appendix: Hyperparameters and Metrics
	Models
	Datasets

	Ablation Study: Quantization Components and Clipping Sensitivity
	Pseudo code
	Additional Results

