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Abstract

Energy efficiency is increasingly recognized as an important dimension in machine
learning research, yet systematic approaches to measuring and optimizing energy
use remain underdeveloped. In this work, we provide a practical primer on energy
measurements, highlighting key metrics, methodologies, and trade-offs. We intro-
duce a methodology for energy benchmarking, aimed at enabling researchers to
incorporate energy considerations into their algorithm evaluations and to design
methods explicitly optimized for reduced energy demand. To demonstrate the
value of energy-aware benchmarking, we focus on sampling, a fundamental and
widely used operation in probabilistic machine learning that often incurs substantial
computational cost. Guided by the insights gained from the analysis of algorithmic
factors that affect energy efficiency, we introduce a novel sampling method that
allows energy savings of up to 17x compared to widely used approaches. Our
results show how integrating energy considerations into the design and evaluation
of algorithms can enable more sustainable machine learning practices.

1 Introduction

The continued deployment of machine learning (ML) methods in data centers, cloud devices, and
user appliances alike is accompanied by increased concerns about the growing energy demand of
the field [International Energy Agency, 2025, Gadepally, 2025]. Countermeasures include reducing
the carbon-intensity of the electricity supply or shifting training and inference to times or physical
locations with a higher share of renewable energy sources [[Yang et al.| [2023| [Wiesner et al., [2023].
However, we argue that reducing the energy demand of the operations themselves is worthwhile.

Current work on efficiency in ML typically prioritizes performance metrics such as execution speed
or floating-point operations per second (FLOPs). Yet these metrics are not necessarily correlated
with actual energy consumption. Moreover, energy measurements in the field are often superficial,
frequently capturing only system-level overhead rather than the true energy cost of algorithmic
execution. Although a rich body of literature on energy measurement exists in other domains, the
ML community remains comparatively underexposed to rigorous, high-quality energy evaluations
[Chung et al.| 2025, Rézycki et al., [2025]]. As a result, algorithms are still predominantly designed
with speed and accuracy in mind, but rarely with explicit consideration of energy efficiency.

We argue that energy measurements, when performed correctly, are neither prohibitively difficult nor
intrusive. Computing hardware vendors increasingly provision their platforms with power or energy
meters. Given minimal methodological understanding, energy measurements can be hence integrated
into algorithm evaluations with low overhead. Our goal is therefore to support broader adoption of
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energy-aware benchmarking and design in ML by: (i) raising awareness of the issue, (ii) providing a
structured overview of relevant energy measurement methodologies, (iii) showcasing an exemplary,
exhaustive energy evaluation, and (iv) demonstrating how integrating energy considerations into the
design of algorithms can lead to more efficient algorithms. We present a holistic methodology for
assessing the energy efficiency of algorithms, aimed at enabling researchers to incorporate energy
considerations into their evaluations and to design methods explicitly optimized for reduced energy
demand.

As an illustrative application, we focus on the task of sampling, a fundamental building block in ML
and beyond. Sampling is at the core of numerous widely applied models and algorithms, ranging
from Bayesian inference to generative modeling. Despite its conceptual simplicity, the process of
generating random variates is often associated with significant computational costs and, consequently,
high energy consumption. By introducing a novel sampling algorithm that outperforms state-of-the-art
approaches in energy efficiency while demonstrating competitive sampling speed, we showcase how
careful analysis of the algorithmic factors that affect the energy efficiency, combined with rigorous
energy benchmarking, can lead to the design of novel, more energy-efficient algorithms.

2 Energy Efficiency

Energy efficiency in computing systems is shaped by hardware and algorithmic choices and expressed
using various metrics emphasizing different optimization goals. In this work, we begin by defining the
key concepts underlying energy-efficient computation (Section[2.1). We then introduce methodologies
for measuring energy consumption (Section [2.2]and [2.3), followed by an analysis of common factors
that influence the energy efficiency of algorithms (Section [2.4).

2.1 Concepts: What to Measure

Power is defined as the rate at which electricity is consumed, and energy is the cumulative amount
of electricity required to perform a task. Therefore, energy is power integrated with respect to time
[to, t1], as shown in Equation (TJ). Power (P) is measured in Watts (W) or Joules per second, while
energy (€) is measured in Joules (J). In the context of computing, energy is often the more appropriate
metric for optimization, as it directly relates to battery lifetime in mobile devices, operating costs in
data centers, and environmental sustainability in terms of carbon dioxide emissions.
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However, optimizing only for energy may neglect power draw and performance requirements. Peak
power draw is important to consider, given the hardware limitations on the power supply or availability
in the electricity grid. The power demand is influenced by multiple factors [Kaxiras and Martonosi,
2008]:

P~N-C-F-V2+N- R\ V. )
—_—
dynamic static

Here, N denotes the number of actively switching transistors, which depends on both the circuit
design and the program running. C' denotes the capacitance, which is given by the circuit design. F'
denotes the clock frequency, which configurable (impacting performance) but limited by the circuit
design. V' denotes the supply coltage, which relates to the clock frequency C' and configurable as
well, but again limited by the circuit design. Rjc,x denotes the leak resistance and is is fixed by the
circuit design. Therefore, reducing the power demand can be mainly achieved by adjusting the clock
frequency or supply voltage, and through software design, by leveraging computations requiring a
lesser number of active transistors.

Optimizing algorithms exclusively for speed can lead to excessive energy consumption, while
optimizing only for energy may degrade performance; therefore, the energy-delay product (EDP)
serves as a balanced optimization metric that accounts for both energy demand and computational
speed in algorithm design. Energy-delay-squared product (ED?P) prioritizes performance more
strongly, as shown in the Equation (3):

EDP = £[J] - t[s], ED?P = &[J]-t*[s*]. 3)



This becomes more pronounced as even within the same system the power demand can change due
to effects like dynamic voltage and frequency scaling, for which the ED?P can be show to be better
suited [Brooks et al., [2000].

2.2 Methodologies: How to Measure

Measuring power draw or energy consumption in computing systems can be approached from two
complementary perspectives: direct physical measurement and indirect logical modeling.

Physical measurement Physical measurements rely on electrical sensors that directly or indirectly
capture voltage and current in circuits. Examples include shunt resistors and Hall effect sensors
[Ziegler et al.| [2009]]. Physical measurement methods provide high accuracy and fine temporal
resolution, but require setup alterations in the form of hardware modifications, which may be
impractical and sometimes even infeasible.

Logical modeling Alternatively, software power models can estimate power draw and energy
consumption by multiplying hardware performance counters (cycles, instruction count, cache accesses
etc.) or other software-level statistics with initial physical measurements of single operations [Bellosal
2000]. For example, instead of measuring the energy consumption of a sampling routine on the
circuit level using techniques described above, one counts the operations (lookup, addition, etc.)
performed via software and then multiplies by separately taken physical measurements of the
individual operations. While easier to integrate as no additional circuits are required, their accuracy
depends heavily on the quality of the model (potentially disregarding side-effects such as cooling due
to workload), thus making these methods ultimately more error-prone.

2.3 Hierarchy of Measurement Facilities

Another important dimension is granularity. One may analyze energy demand per instruction, per
algorithm, or per system. At the instruction level, activity factors such as the number of transistor
switches, the clock frequency, and supply voltage determine dynamic power [Kaxiras and Martonosi
2008| see Section. At higher levels, interactions with the memory hierarchy, I/O, cooling, and
communication can contribute substantially to overall consumption. Analyzing the energy demand at
different levels requires different measurement facilities. Extending on existing classification Kohler
et al.| [2020], the measurement facilities can be categorized on where there are placed in relation to
the computing system and how many components they measure at the same time.

External devices The most versatile but also coarse-grained instruments intercept the power supply
between the power source and the device under test. Therefore, it yields a comprehensive description
of the power draw and energy consumption of execution, but including the energy consumption of
other processes going on in the device. Hence, it is advisable to control for confounders like storage
activity, network connectivity and display brightness when performing measurements. In this study,
we utilize the Microchip MCP39F511N, a dual-channel monitor that can measure the current power
draw at up to 240 Hz and a 0.5% value error margin.

On-board monitors Modern mainboards contain power sensors, which are accessible through
interfaces like the Intelligent Platform Management Interface (IPMI). Their resolution in time and
value is typically not sufficient for machine learning applications. Without a dedicated power meter
at the power supply of, e.g., for the GPU, the informative value is not higher than an external
measurement device. However, hardware vendors offer development boards with dedicated power
rails to report voltage, current, and power draw of different components of the system. For example,
boards of the NVIDIA Jetson series integrate measurement facilities for CPU, GPU, the memory
subsystem, WiFi, and the entire system. These devices can help with the analysis and optimization of
machine learning algorithms, or the formulation of logical energy models. They provide moderate
accuracy at little overhead and expose measurements through Linux kernel interfaces.

On-chip counters At the finest granularity, processors may integrate energy monitoring themselves.
Intel’s Running Average Power Limit [[David et al.[2010, RAPL] interface is a well-known example.
RAPL registers capture cumulative energy consumption (not power draw) at about 1 ms resolution.
RAPL exposes the energy usage per domain (CPU cores, internal GPU, DRAM, full package).



RAPL-compatible interfaces exist in AMD processors since Ryzen Gen 3. Recent Apple Silicon
processors (since M1) introduced their own set of hardware counters, including energy counters
for the GPU and the Neural Engine. These mechanisms enable detailed energy accounting with
negligible overhead, but are restricted to supported platforms.

Likewise, GPU vendors integrate energy or power meters, accessible through their software stack.
For example the NVIDIA System Management Interface (nvidia-smi) can report the current power
draw at a point in time, which can be numerically integrated into the energy demand of an operation.

Best practices Even at fixed clock rates, switching between CPU architectures can significantly
alter power demand but not necessarily energy demand. A low-power device (a microcontroller or
efficient CPU core) can run for a longer time than a more power-intensive one, resulting in comparable
energy integrals—or not, depending on the static power demand and thus energy proportionality (i.e.,
the degree of proportionality between energy consumption and workload) of the system [Barroso and
Holzlel, 2007]]. For a fixed problem size, the latter device can switch to idle mode after completion
or process more elements for a given unit of energy. Consequently, to obtain more representative
measurements, one should fix the CPU frequency and micro-architecture (cores) in experiments.

2.4 Energy-Efficient Design of Algorithms

The power draw and energy consumption of algorithms are shaped by multiple factors. A systematic
analysis of these factors allows for a more comprehensive comparison of existing algorithms, provides
insight into implementation trade-offs, and ultimately guides the development of novel energy-
efficient methods.

Arithmetic operations The energy cost of an arithmetic operation depends on both the type of op-
eration and the precision of the operands. In general, integer arithmetic is cheaper than floating-point
arithmetic because floating-point operations require more complex circuitry, including normaliza-
tion, rounding, and handling of exponents. Therefore, floating point operations require switching
of more transistors, thus increasing power draw [Kaxiras and Martonosil[2008] see Equation (2))].
Among arithmetic operations, additions and subtractions are the least expensive, as they only require
basic logic for carrying and summing bits. Multiplications are more costly because they involve
repeated addition and shifting steps internally, and floating-point multipliers also require exponent
and mantissa adjustments. Division and exponentiation are the most expensive operations, often
requiring iterative algorithms or table lookups in hardware, which increase both latency and energy
consumption [Knuth, [2014]. Reducing precision (e.g., using half-precision or single-precision floats
instead of double) can further reduce energy usage while still maintaining acceptable numerical
accuracy for many ML tasks [Micikevicius et al., [ 2018].

Conditional operations Branches dependent on unpredictable outcomes can lead to pipeline stalls
and branch mispredictions, which waste energy. Branchless implementations, using arithmetic
operations instead of conditionals, may improve both performance and energy efficiency.

Memory access There is a direct connection between the memory access behavior of modern
computer systems and their electricity consumption [Horowitz, 2014]. Memory subsystems and CPU
caches have long been overlooked in comparison to computational cores but constitute a large portion
of active transistors in today’s chip designs, leading to higher dynamic power demands. Memory
hierarchy interactions are often more energy-intensive than arithmetic operations. This means that,
for general-purpose computers, algorithms that trade computation for memory lookups may have
slightly worse energy efficiency than plain recomputation. This effect is more pronounced with
multiple, nested lookups (also known as pointer chasing) because it involves more active transistors,
which increases power demand. It also breaks CPU cache locality and access prediction, resulting
in prolonged CPU stalls (increased time demand) and thus non-linear increase in energy demand.
Optimizing locality is thus crucial.

Overall, designing energy-efficient algorithms requires balancing these factors, often with application-
specific trade-offs between quality, reproducibility, and computational constraints. Beyond these
general factors, probabilistic ML adds a further source of energy demand: random number generation,
which lies at the core of sampling algorithms.



Entropy source Many algorithms require (pseudo-)randomness, making random number generation
an additional source of energy consumption. Hardware random number generators can provide high-
quality entropy at low latency but often incur notable power costs. In contrast, software-based pseudo-
random number generators (PRNGs) are lightweight, reproducible, and often sufficiently accurate for
sampling-based algorithms. Nevertheless, the choice of generator matters: certain cryptographically
secure or high-quality generators may introduce significant computational overhead. In extreme
cases, the entropy source can become a dominant contributor to energy consumption.

3 Sampling

In the following, we first review classical methods for sampling from discrete probability distributions,
along with recent state-of-the-art advances. We then introduce a novel sampling method explicitly
designed for energy efficiency while maintaining competitive performance. Our approach leverages
the factors discussed in Section 2] to systematically reduce energy demand. Finally, in Section 4] we
present an experimental evaluation of these methods, illustrating how careful energy-aware analysis
can drive algorithmic innovation.

Formally, by sampling from a discrete probability distribution we mean the task of generating random
variates from any finite distribution over n outcomes. The distribution is characterized by probabilities
P1,---,pn € [0,1] associated with outcomes z1, ..., z, € X, where > .| p; = 1. We impose no
restrictions on the structure of the outcome space X: outcomes may be real numbers, categorical
labels, strings, pointers to complex data structures, or any mixture thereof.

3.1 Common Sampling Methods

We chose three discrete sampling methods to benchmark their energy efficiency and compare our own
algorithm against: the inversion method, the alias method, and the Fast Loaded Dice Roller (FLDR).
The inversion method [Devroyel, [2006] is one of the the most widely used sampling method and is
integrated into many commonly used libraries. The Alias method [[Walker, |1974b] is a more efficient
approach to random variate generation, though less commonly employed in standard libraries. FLDR
[Saad et al.l 2020] is a recently developed method for discrete sampling that is claimed to be faster
than the Alias method and other state-of-the-art competitors. Due to space constraints, the details
are provided in the Appendix [A] Next, we shortly revisit the idea of lookup table-based sampling in
order to then introduce our discrete sampling method.

3.2 Lookup Table based Sampling

Naive lookup table sampling constructs a lookup table containing duplicates of each outcome x;
proportional to its probability p;:

occurrences of x; in table

= p;- 4

table size b @)
Sampling a random variate then reduces to uniformly selecting a random table index I ~
Uniform{1,..., N} and returning S = Table[/], where N is the table size, see Figure[la|(“Classic
Lookup Table”) for an example lookup table.

In practice, memory constraints bound the table size N, limiting representable probabilities to
multiples of 1/N. Approximating probabilities to precision b bits requires quantizing each p; to
p; = round(p; - 2°)/2°, yielding a table of size N = 2. While approximation error decreases
logarithmically with b, memory requirements grow exponentially, making high-precision sampling
prohibitive.

3.3 Our Sampling Method

Our approach, which we call ¢LUT, is based on the idea of lookup tables, reusing precomputed
results, while conserving memory requirements and memory accesses. Sampling using lookup tables
offers multiple benefits (single lookup, no arithmetics, no branching) that enable energy efficiency as
detailed above, but suffers from huge memory requirements even for reasonable precision. Sampling
from a distribution with 32-bit precision requires storing 232 ~ 4.3 billion entries (17GB for values
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Figure 1: (a) The classic and compressed lookup table for an example distribution on given by p (left).
The classic lookup table (middle) contains each value according to its probability p at a precision
of b = 4 bits. The compressed lookup table (right) stores the same distribution. For example, the
probability of x; is given by the compressed lookup table as % : % + % . % + % : % = 1—76. (b) Schematic
of our sampling algorithm: A row index is sampled geometrically and a column index uniformly. The

sample is generated by a single lookup.

stored in a 32-bit format). The impractical memory requirements (that scale exponentially) motivate
our approach to decrease the memory requirements by losslessly compressing the lookup tables
strategy, then sampling using the compressed tables with a tailored sampling scheme.

Compression scheme Intuitively, our compressed lookup table can be viewed as a two-dimensional
array consisting of 7 4 1 rows and 2°¢ columns, with r, ¢ € {0,..., b} satisfying 2"7¢ = 20 = N,
Each row i of the first r rows corresponds to a frequency of 2" %, where row indices run from 1 to
r. The r+1-th row corresponds to the same frequency as the r-th row, namely 2"~" = 1. For an
exemplary compression, see Figure [Ia]

This lossless compression scheme preserves the total frequencies while drastically decreasing the
size of the lookup table. Compressing a naive lookup table with N = 2" "¢ entries to a compressed
lookup table with (r + 1) - 2¢ entries yields a compression ratio of p = 2" /(r + 1).

Sampling step To generate a sample S € X" using a compressed lookup table, we generate two
indices independently: a row index I € {1,...,r+1} and a column index J € {1,...,2°}. We
sample the index I according to a truncated geometric distribution, and the column index J uniformly:

P(I =4) =max(27%,27") fori=1,...,7+1, andP(J=j)=2"° forj=1,...,2°

Therefore, we sample a table-index (I, .J) = (i, j) with probability 2~ ™"(%:")=¢_The column index
J can be efficiently sampled using any uniform sampler. The row index I can also be sampled
extremely efficiently using, for example, the procedure detailed in Algorithm|I]in lines 2-5. A sample
is then generated by returning the value stored in the compressed lookup table at that index:

S =TI, J].

Algorithm 1 Our approach: Sampling using compressed lookup tables

Require: number of samples n, compressed lookup table T of size (r 4+ 1) x 2¢
Ensure: array of samples S of size n
1: for k =1tondo
2: // Generate a row index geometrically:
I+1
while I < r + 1 & randomBit() = 1 do
I+T+1
// Generate a column index uniformly:
J < Uniform{1,...,2°}
// Look up sample at generated index:
9: Slk] + TII,J)
10: return S

A A

Preprocessing step We construct the compressed lookup table directly from the binary expansion
of the probabilities p; rounded to precision of 2. A value x; appears in row j if and only if the



7-th bit of p; is one. The rounded probabilites p; can be adjusted to sum to exactly 1 by using a
sum-preserving rounding scheme, making our sampling procedure rejection-free. The number of
active bits across the binary representations of the p; may differ, which results in rows of unequal
width in the initial construction of the compressed lookup table. To improve the sampling speed, we
ensure that all rows have uniform width by moving entries to rows below while doubling them (to
ensure correct frequencies).

4 Evaluation

Evaluation setup Our experiments were conducted on a conventional laptop powered by an
Intel i7-1255U processor and 16 GiB of DDR4 RAM, running Ubuntu Linux. To ensure accurate
measurements, as to prevent inaccuracies from Dynamic Frequency and Voltage Scaling [Le Sueur
and Heiser, [2010]] and thread movement across cores, we fixed the CPU’s clock rate at its maximum
of 4.7 GHz and bound single-thread workloads to a single core. As our particular Intel Hybrid CPU
architecture comprises of larger performance cores and limited efficiency cores, we opted for the
P-cores for consistent measurements. We test state-of-the-art approaches and our cLUT method in
Python and C. We compare all algorithms on a set of synthetically generated distributions (with
the number of unique outcomes n spanning the range [10%, 107]), randomly sampled from Dirichlet
priors to ensure a wide range of entropy values. We measure energy usage, average power, EDP, and
execution time.

Evaluation of Python implementations We benchmark our cLUT algorithm and discrete sam-
plers from popular Python ML libraries, namely, RandomGenerator.choice() from NumPy,
multinomial () from PyTorch, and random.choice() from JAX [Harris et al., 2020, |Paszke
et al.,[2019} Bradbury et al., [2018]]. The discrete samplers from NumPy, PyTorch and JAX all use
(optimized) versions of the inversion method (see Appendix [A). To simulate a real-world sampling
application, time and energy measurements account for the entire pipeline, including preprocessing,
10® sampling iterations, and the execution overhead. To comply with a realistic and user-friendly
evaluation scenario, we perform measurements via logical modeling as opposed to direct physical
measurements, as described in Section[2.2] For robustness, energy consumption is measured by two
sources: RAPL interface as an on-chip counter and Microchip MCP39F511N (MCP) as an external
source (see Section[2.3). Average power and EDP values are computed with respect to RAPL data
(see Section [2.T)). Due to the space restrictions, we provide results only on the package domain of
RAPL as the most representative.

Figure [2| shows the mean and standard deviation of energy consumption and execution time for each
distribution size. The discrete sampler from NumPy is shown to be the least efficient overall, while
JAX and PyTorch exhibit varying relative performance depending on the size of the distribution. The
proposed cLUT sampler demonstrates efficiency in all dimensions: the energy demand of cLUT is up
to 17 x lower for larger distributions (n € (10°,107]) and up to 6x lower for smaller distributions
(n € [10%/10%]), as shown in Table [Il One may notice that energy consumption is not always
correlated with the execution time. E.g., in the group of larger distributions, JAX exhibits longer
runtimes than PyTorch yet consumes less energy. In such scenarios, the Energy-Delay Product
(EDP, see Section [2.1) offers a more balanced metric, revealing that PyTorch achieves greater overall
efficiency (Table[l).

Evaluation of C implementations As the C implementation allows for low-level energy measure-
ments, we distinguish between the preprocessing and sampling stages and measure them separately.
We run 10% warm-up sampling iterations before doing actual measurements for 107 sampling iter-
ations. As in the previous group of experiments, we measure the package domain from RAPL for
energy consumption. MCP measurements are not applicable because the runtime is too short for
capturing accurate energy readings. We compare cLUT to C implementations of classic methods and
recent state-of-the-art advances for discrete sampling.

Figure [3| illustrates the energy efficiency of the evaluated methods and highlights the systematic
advantage of the cLUT sampler in reducing energy consumption. This advantage arises not only
from acceleration but also from the elimination of computationally expensive operations; figures
are shown in Table[2] The polarity of the power data is explained by the different behavior of the
methods on different entropy ranges: distributions with high entropy are more likely to belong to the
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Figure 2: Energy efficiency of built-in discrete samplers from widely used libraries (NumPy, JAX,
PyTorch) and our approach (cLUT). Shown are (1) average energy consumption (RAPL:pkg, mean
and standard deviation microjoules), (2) the overall execution time (mean and standard deviation in
microseconds), and (3) average power draw (each point denotes a result for a distribution, in Watts)
per one single sample from distributions of varying sizes n. The plots are shown on a log-log scale.

Sampler RAPL:pkg [1J] MCP [1J] Time [pus]  Average power [W]  EDP [u] -us]

JAX 176 £026  345+047 0154002 1217+ 169 026+ 007

we ot ggr  NumPy 195+ 115 3344192 0134007 15124218 033 +0233
: PyTorch 1334067 233+ 117 0094005 14864199  0.15+0 14

LUT (ours)  0.32+0.03  0.62+0.05 0.03+000  1050+-1.09  0.01+ 0.0

JAX 2084025 4094046 0.18+002 1180+ 152 037+ 008

o o NumPy 630400 11L70+£777 047+032 14074193 423 +4.58

n€ 0510 purorch 2404136 4294251 0074010 1468+ 138 0.3 +0.54
cLUT (ours)  0.38+0.08  072+013 0.03+000 1153220  0.01+0.00

Table 1: Benchmark of discrete samplers from popular Python libraries relevant to machine learning
(JAX, NumPy, PyTorch) and our cLUT method. Measured are energy consumption of the sampling
procedure (RAPL:pkg, in microjoules), energy consumption of the whole system during execution
(MCP, in microjoules), execution time (in microseconds), average power draw (in Watts), and Energy-
Delay Product (EDP, see Section[2.T)), grouped by the distribution size n (number of unique outcomes).
RAPL energy consumption is additionally supplemented by the energy consumption of the overall
system measured by MCP. Execution of 10® samples was repeated and measured five times, and then
averaged to a single iteration.

Sampler RAPL:pkg [n]] Time [ns] Average power [W]  EDP [uJ - 5]

Inversion method  728.21 £ 73.56  43.22 4+ 2.69 16.99 £+ 2.33 31.34+2.16

ne [104 106] Alias method 264.06 + 118.05 17.39 +17.02 15.41 £+ 3.66 5.25+4.33
’ FLDR 256.22 + 88.76 16.59 £5.0 15.62 £2.75 4.61 £3.24

cLUT (ours) 175.21 £47.32 14.32 +2.48 12.58 + 4.05 2.52 +0.92

Inversion method 676.31 4+ 110.39 45.07 4 4.39 15.34 +£3.52 30.04 £ 3.0

n e (108 107] Alias method 42241 +£104.72 34.04 £8.12 12.81 +3.46 1475 +£7.2
’ FLDR 278.66 + 176.24 19.49 + 10.9 14.37 £ 3.55 715+ 11.7

cLUT (ours) 179.41 + 64.68 15.53 +4.29 11.7 + 3.33 2.97 +2.14

Table 2: Benchmark of C implementations of classic methods and recent state-of-the-art advances
for discrete sampling, and our proposed cLUT method (see Section [3.3). Measured are average
energy consumption (RAPL:pkg, in nanojoules), execution time (in nanoseconds), power draw (in
Watts), and Energy-Delay Product (EDP, see Section [2.1)) per single iteration of sampling, grouped
by the distribution size n (number of unique outcomes). Execution of 107 samples was repeated and
measured five times, and then averaged to a single iteration.
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Figure 3: Energy efficiency of C implementation for classic methods and recent state-of-the-art
advances for discrete sampling, and our proposed cLUT method. Shown are (1) average energy
consumption (RAPL:pkg, mean and the interval between the 1st and 3rd quartiles in nanojoules),
(2) execution time (mean and the interval between the 1st and 3rd quartiles in nanoseconds), and (3)
average power draw (each point denotes a result for a distribution, in Watts) per one single sample
from distributions of varying sizes n. Preprocessing time was measured separately and subtracted to
isolate the pure sampling time. The plots are shown on a log-log scale.

upper cluster. The inversion method is shown to be less scalable with respect to the distribution size
n, and the inversion method is found to be entirely uncompetitive (Table 2)).

5 Conclusion

In this work, we provided a comprehensive primer and framework for incorporating energy awareness
into algorithmic research, outlining fundamental concepts, metrics, and methodologies for assessing
power draw and energy efficiency. We demonstrated how such analyses can reveal previously hidden
trade-offs and guide the design of more sustainable computational methods.

As an illustrative case study, we examined discrete sampling, a fundamental operation in probabilistic
machine learning and beyond. Based on rigorous analysis of the energy dynamics of sampling
algorithms, we derived our own energy efficient sampling method cLUT. Through extensive bench-
marking across multiple software frameworks and implementation levels, we showed that cLUT
substantially reduces both execution time and energy demand. In Python-level evaluations, cLUT
achieved up to a 17 x reduction in energy consumption for large distributions (n > 10%) and up to a
6 reduction for smaller ones, while maintaining or exceeding the speed of competing implementa-
tions in NumPy, PyTorch, and JAX. In low-level C benchmarks, cLUT consistently demonstrated the
lowest average power consumption and energy-delay product, confirming that its efficiency stems
from the elimination of energy-intensive operations.

These findings emphasize that energy consumption is not necessarily correlated with runtime or
throughput alone. Metrics such as the Energy—Delay Product (EDP) provide a more holistic view
of efficiency, capturing both computational performance and energy demand. Our experiments
highlight that even well-optimized libraries can vary substantially in energy efficiency, underscoring
the importance of integrating energy metrics into benchmarking and model evaluation workflows.
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A Details on sampling algorithms

Alias method The alias method [Walker, |1974al [Vose} [1991]] preprocesses a probability distribution
over n outcomes into two tables: a probability table and an alias table. Each of the n outcome is
represented by an integer between 1 and n (e.g. through the mapping x; + ¢) and assigned a “bucket”
in with equal weight 1/n. The probabilities p1, . . ., p,, are redistributed so that each bucket contains
either a single outcome with probability p; > 1/n, or a mixture of two outcomes. Two tables are
constructed: the probability table and the alias table. The probability table stores the proportion at
which bucket 7 is “filled” with outcome ¢. The alias table stores the second outcome, if any, that is
distributes to the bucket.

During sampling, one first selects a bucket uniformly at random, and then performs a biased coin flip
to decide between the primary and alias outcome stored in that bucket. Sampling occurs therefore
in two steps. First, a “bucket” is randomly selected among {1, ..., n} with equal probability (1/n).
Second, the value stored in the probability table in that bucket is read out and a biased coin is flipped
according the read probability, e.g., by generating a uniform random variate on the unit interval [0, 1]
and checking wether it is bigger than the specified probability. If heads, the bucket index is returned;
if tails, the value stored at the Alias table is returned. This has the time complexity of generating a
single sample at O(1) after O(n) preprocessing, at O(n) memory. See FigureE]for an illustration.
Figure [] contains one possible implementation of the alias method for a distribution with n = 5
outcomes given by the probabilities (7/25,6/25,1/25,6/25,1/5). Generation of a single sample
could look like this: (i) a random bucket index is drawn equiprobable and turns out to be 4, (ii) a
biased coin is flipped with 4/5 probability to land heads. It lands heads and 4 is returned. If it would
have landed tails, 2 would have been returned, since 2 is stored in the alias table at bucket 4.

Ilustration of Alias Method Probability Table
1
475 - @4 . s | 1 s as |1
3/5 7 L2 T4 Zs5 Alias table
T1
1/5 7 z3 4] 21 ] 2[5
Bucket: 1 2 3 4 5 1 2 3 4 5

Figure 4: The Alias method for sampling from a discrete distribution. Each bucket has equal
probability 1/n. A coin flip decides between the primary and alias outcome. Example of a distribution
with n = 5 outcomes given by the probabilities (7/25,6/25,1/25,6/25,1/5).

Inversion method The inversion method relies on the cumulative distribution function (CDF) F'(z)
associated with the distribution. Given a uniform random variate U ~ Unif(0, 1), one obtains a
sample from the distribution by computing (see Figure [5|for an illustration):

S=FYU).

This construction works because the CDF transforms the probability space into the unit interval,
and applying the inverse recovers the correct distribution of outcomes. The method is conceptually
simple, but requires efficient computation of the inverse CDF, which is only analytically available
for certain distributions (e.g., exponential, geometric). For more complex distributions, numerical
approximation or interpolation of the inverse CDF may be used, at the expense of computational and
energy cost.
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S =FL(U)

Figure 5: Tllustration of the inversion method. A uniform variate U ~ Unif[0, 1] is drawn, then
mapped through the inverse CDF F'~! to obtain a sample S that is distributed according to F.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: The claims made match the results of the evaluation section.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, area of application of different metrics and devices is discussed.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: The paper is mostly focused on empirical measurements.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Both the algorithm as well as the evaluation setup are detailed extensively, and
the code is provided.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: Code and data are provided.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.
* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

¢ The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: In the evaluation setup section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Standard deviations are provided and mentioned in the tables.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Detailed in the evaluation setup section.
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: To the best of our knowledge, there are no deviations from the Code of Ethics,
and anonymity is preserved.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The environmental effect of inefficient sampling algorithms is discussed in the
introduction, and the potential for reduction in energy consumption is clearly stated.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: There is no risk, as the sampling yields the same results as previous exact
samplers, just more efficient.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Authors are credited in code and manuscript.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: Details are communicated in the paper.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: LLMs not involved.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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