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Abstract

Today, a lot of research on language models is focused on large, general-purpose
models. However, many NLP pipelines only require models with a well-defined,
small set of capabilities. While large models are capable of performing the tasks of
those smaller models, they are simply not fast enough to process large amounts of
data or offer real-time responses. Furthermore, they often use unnecessarily large
amounts of energy, leading to sustainability concerns and problems when deploying
them on battery-powered devices. In our work, we show how to train small models
for such efficiency-critical applications. As opposed to many off-the-shelf NLP
pipelines, our models use modern training techniques such as distillation, and offer
support for low-resource languages. We call our models TiME (Tiny Monolingual
Encoders) and comprehensively evaluate them on a range of common NLP tasks,
observing an improved trade-off between benchmark performance on one hand,
and throughput, latency and energy consumption on the other Along the way, we
show that distilling monolingual models from multilingual teachers is possible, and
likewise distilling models with absolute positional embeddings from teachers with
relative positional embeddings.

1 Introduction

Transformer-based encoders such as BERT Devlin et al.| [2019b], RoBERTa [Liu et al.| [2019D]],
and XLM-RoBERTa (XLM-R)|Conneau et al.| [2020] have become foundational to modern Natural
Language Processing (NLP), achieving state-of-the-art results on a wide array of tasks. However, their
substantial size, often comprising hundreds of millions or billions of parameters, and consequently
high computational demands, pose significant challenges for deployment in time-critical or resource-
constrained environments.

Support for non-English languages is often achieved by training multilingual models. While those
offer versatility, their size can be prohibitive. Furthermore, their per-language capacity might be
diluted compared to specialized monolingual models, which can offer optimal performance for
individual languages Martin et al.| [2020], /Antoun et al.|[2021]]. This creates a pressing need for
efficient, yet high-performing, monolingual language models.

"Models available at https://huggingface.co/collections/dschulmeist/time, code at
https://github.com/epfl-dlab/TiME.


https://huggingface.co/collections/dschulmeist/time
https://github.com/epfl-dlab/TiME
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Figure 1: Performance—efficiency trade-off, averaged across all languages. Our distilled TIME
models (red circles) are compared against baselines (grey crosses). The dashed line represents the
efficiency frontier, connecting the models that offer the optimal trade-off. (a) plots the average NLP
score against inference latency (ms), where lower is better. (b) plots the same score against throughput

(samples/second) at the optimal batch-size, where higher is better.

Knowledge Distillation (KD) [Hinton et al., [2015]] offers a path to compress large teacher models
into smaller, more efficient students while retaining much of the original performance. We adopt
the MiniLMv?2 distillation framework [Wang et al.l 2021]], specifically its multi-head self-attention
relation distillation, to create compact monolingual models. Our students are distilled from powerful
teachers: the multilingual XLM-R-Large and strong monolingual models from the HPLT project

[Aulamo et al.,|2023| [Pyysalo et al., 2024]).

We train models for 16 languages (full list in Table[5]). For readability reasons, we focus on seven
core languages in the main body of the paper and include results for the remaining languages in the
appendix. The seven core languages were chosen to cover low-, medium-, and high-resource training
data regimes: Irish (low); Urdu, Danish, Hungarian (medium); and English, German, French (high).

Contributions Our goal is to produce high-performing, yet significantly faster and more energy-
efficient, monolingual encoder-only models that can be readily used for downstream applications.

We call these models TiME (Tiny Monolingual Encoders). We make the following contributions:

» We present a robust and practical MiniLMv2-based distillation pipeline and demonstrate its
effectiveness in creating compact, high-performing TiME models for 16 languages, covering

high- and low-resource regimes.
* We comprehensively evaluate these models on core NLP tasks (part-of-speech tagging,

lemmatization, dependency parsing, named-entity recognition) and question answering,
demonstrating competitive performance across all languages.

* Our distilled models achieve substantial inference speedups (up to 25x) and energy ef-
ficiency improvement (up to 30x) over their large teacher models and strong baselines
(Table[T). Our evaluation focuses on this practical performance, measuring latency, through-

put and energy use per sample to provide a more realistic assessment of efficiency than

comparisons based on parameter count alone.

* We demonstrate successful knowledge transfer from teachers with relative position em-
beddings (LTG-BERT) to students with absolute position embeddings (standard BERT),
and show that multilingual teachers can produce monolingual students rivaling those from

specialized monolingual teachers.



* In the appendix, we include the results of additional experiments: NLP scores and speed
for all 16 languages (Tables [5]and [6), an analysis of the trade-off between throughput and
latency (Fig.[5), and a comparison with the models used in the spaCy transformer pipelines

(Sec.[AT).

2 Related Work

The growing size of neural networks, especially Transformer-based ones |Vaswani et al.| [2017]], has
spurred significant research into model compression, where knowledge distillation (KD) from a large
teacher model into a small student model Hinton et al.|[2015] has become a powerful framework.
Methods for distilling BERT-style models include DistilBERT [Sanh et al.| [2020], which uses a
combination of losses on soft-target probabilities, and TinyBERT Jiao et al.|[2020]], which leverages
intermediate hidden states and attention matrices for a more fine-grained transfer. Other approaches,
like MobileBERT |Sun et al.|[2020], redesign the teacher and student architectures to facilitate layer-
wise distillation. These methods showcase a range of strategies, primarily differing in the way of how
knowledge is transferred from teacher to student.

Our work builds on the MiniLM family of distillation methods, which focus on transferring the
internal mechanics of the self-attention mechanism. MiniLM |Wang et al.[[2020]] introduced deep self-
attention distillation, targeting the self-attention distributions and value-relations from the teacher’s
final layer. MiniLMv2 [Wang et al.|[2021]], the core method we employ, generalizes this by distilling
fine-grained multi-head self-attention relations. These relations are defined as the scaled dot-products
between pairs of query (Q), key (K), and value (V) vectors. This detailed approach crucially removes
the constraint that student and teacher must have the same number of attention heads, allowing for
greater flexibility in student architecture.

A key challenge in modern NLP is that large multilingual models like mBERT |Devlin et al.|[2019b]]
and XLM-R |Conneau et al.|[2020], while enabling impressive cross-lingual transfer, often exhibit
diluted per-language capacity and pose prohibitive deployment costs. This stands in contrast to
specialized monolingual models, such as CamemBERT [Martin et al.| [2020]], which can achieve
superior performance. The approach of distilling compact monolingual students from large multilin-
gual teachers is a promising strategy to combine the best of both worlds. Singh et al.| [2023]] have
previously demonstrated the viability of this strategy using a DistilBERT-style methodology, with a
key contribution being a detailed analysis of vocabulary manipulation for low-resource languages.

Our work is complementary to these efforts but differs in several crucial aspects. First, we employ
the more recent attention-relation transfer of MiniLMv2. Second, our analysis centers on practical
performance—efficiency trade-offs. Finally, we demonstrate the robustness of our approach by
successfully bridging architectural mismatches, such as distilling knowledge from a teacher with
relative position embeddings into a student with standard absolute position embeddings.

3 Methodology

We replicate the distillation setup of the MiniLMv2 models Wang et al.|[2021]] and use it to train
efficient monolingual models from mono- and multilingual teachers. We evaluate the models’
performance when fine-tuned on typical NLP pipeline tasks, and the speedup over their larger
teachers.

3.1 Distillation

We adopt the multi-head self-attention relation distillation strategy from MiniLMv2 Wang et al.
[2021]]. The core idea is to train the student model to mimic the self-attention relations of a specific
teacher layer. These relations are computed as the scaled dot-product of pairs of query (Q), key (K),
and value (V) vectors. The total loss is a weighted sum of KL-divergence losses between teacher and
student relations for chosen pairs:

Lowin =Y WmnDir(Relf"||Relg™),
(m,n)eER

where R is the set of chosen relation pairs, w,y,,, are their weights, and Rel7'" and RelJ'™ are the
attention relations (distributions over sequence positions after softmax) for the teacher and student,



respectively. Following [Wang et al.[[2021] we use Q-Q, K-K, and V-V relations with equal weight.
The raw dot-products AT = vector,, - vector’ /v/dy, (where dy, is the dimension of the key/query
vectors) are used to compute these relations, with a softmax function applied before calculating the
KL divergence.

3.2 Models

Teachers As the multilingual teacher we use the XLM-R-Large model /Conneau et al.| [2020], and
as monolingual teachers the models from the HPLT project |/Aulamo et al.| [2023]], [Pyysalo et al.
[2024].

Students The student models are Transformer encoders with varying depths and widths. We define
three sizes:

* Medium (m): 6 layers, 768 hidden size (Lg = 6, Hg = 768)
* Small (s): 6 layers, 384 hidden size (Ls = 6, Hg = 384)
* Extra-Small (xs): 4 layers, 384 hidden size (Lg = 4, Hg = 384)

For all students, the intermediate feed-forward size is 4 x Hg, and the number of attention heads is
12. The student and the teacher always share the same tokenizer.

Our choice of layer 19 for the XLM-R-Large teacher directly follows the recommendation in the
original MiniLMv2 paper [Wang et al.|[2021]], which empirically found this layer to be the most
effective knowledge source for large RoOBERTa-style architectures like XLM-R. The number of
relation heads (A,.) is set to 64 for XLM-R-Large and 48 for the other teachers.

It is worth noting that the HPLT teacher models Pyysalo et al.|[2024]] use the LTG-BERT architecture
Samuel et al.| [2023]], which incorporates modifications such as GeGLU activations and relative
position embeddings. We deliberately chose to distill into a standard BERT architecture with absolute
position embeddings. This decision was motivated by two factors: First, standard BERT architectures
are broadly compatible with existing NLP tooling, ensuring our models are easy to adopt. Second, we
observed that the LTG-BERT architecture can be substantially slower in practice. We found that the
MiniLMv?2 distillation method is robust enough to bridge these architectural differences, successfully
transferring knowledge from the teacher despite the change in position embedding strategy and
activations.

Training We train models using the AdamW optimizer with 5; = 0.9 and € = 1le—6. We set
B2 = 0.98 for distillation from XLM-R-Large and 52 = 0.999 for HPLT models, following the
original MiniLMv?2 hyperparameter tuning which found different optimal values for RoOBERTa-style
and BERT-style teachers, respectively. The learning rate is 5.5e—4, with a 4 000-step linear warmup
and subsequent linear decay. We train each model for 200,000 steps on NVIDIA A100, H100, and
H200 GPUs with BF16 mixed-precision and an effective batch size of 256, saving a checkpoint every
10,000 steps. In Sec.[d] we report the results for the best checkpoints.

3.3 Checkpoint Selection

We select the optimal checkpoint from the 20 checkpoints saved during each 200,000-step training
run. For each language, we evaluate all intermediate checkpoints and keep the one that minimizes the
MiniLMv2 distillation loss on an external validation set that is not seen during pre-training:

* Irish (ga) — we use the dev split of the FLORES-200 multilingual benchmark [Goyal et al.}
2022, \Goyal and et al., ZOZS]EI

* All other languages — we use the source/target side of the WMT24++ parallel corpus
[Google Research, |2024, [Liang and et al.| 2024] that corresponds to the language pair
en«>XX. For English we take the English source side, for the remaining languages the
respective target side.

’Dataset ID facebook/flores on Hugging Face.



Note that for Irish we had to find a different validation set, since Irish is not contained in the
WMT24++ dataset. This checkpoint selection strategy is particularly important. While longer
distillation can sometimes yield further improvements [Wang et al., |2021], it also significantly
increases computational cost. More critically, for low-resource languages where the unique training
data is limited, extended training (equivalent to many epochs over these smaller datasets) heightens
the risk of the student model overfitting to the distillation data. By evaluating on an external validation
set unseen during distillation, we want to identify checkpoints that generalize well and strike a balance
between effective knowledge transfer and robustness, especially for these resource-scarce scenarios.

3.4 Datasets and Evaluation Tasks

Training data and languages. All student models are distilled using language-specific subsets of
the CulturaX dataset Nguyen et al.|[2023]]. We train models for high-resource languages (English, en;
German, de; French, fr), medium-resource languages (Danish, da; Hungarian, hu; Urdu, ur) and a
low-resource language (Irish, ga). For English, we only train a single model, meant as a reproduction
of the MiniLMv2 paper |Wang et al.| [2021]], since their focus is on training English models. To have
a reference for a small multilingual model that supports all of those languages simultaneously, we
compare with mMiniLM-L6-H384, distilled from XLM-R-Large Wang et al.[[2021]. In the appendix,
we report results on models for nine additional languages that were trained in the same way.

NLP tasks. We evaluate the models on a suite of common NLP tasks: named entity recognition
(balanced F1 score; NER), part-of-speech tagging (accuracy; AllTags), lemmatization (accuracy;
Lemma) and dependency parsing (labeled attachment score; LAS). We adopt the evaluation framework
used for the HPLT models Pyysalo et al.|[2024]. This involves benchmarking on relevant treebanks
from Universal Dependencies de Marneffe et al.|[2021] for POS tagging, lemmatization, and parsing,
and on the WikiAnn dataset(Rahimi et al.|[2019] for NER. Detailed results for all tasks and languages
are presented in Table[3in the appendix.

Speed. For measuring inference throughput and latency, we sample 110 batches of 32 sentences
from the CulturaX subsets for the different languages. We use 10 batches for warmup, and then
measure wall-clock time for the remaining 100 batches. The benchmarks are run on an NVIDIA
A100-SXM4-80GB GPU.

Energy consumption. GPU energy consumption is recorded using the same inference setup as for
measuring latency and throughput by polling nvidia-smi. During each post-warmup window, we
sample nvidia-smi —-query-gpu=power.draw —format=csv,noheader,nounits
at 10 Hz and average over the entire window.

Question answering. To test whether besides NLP tasks our models are also capable of tasks that
require more general knowledge, we evaluate the English and German models on the MLQA question
answering benchmark Lewis et al.| [2020] (only available for en and de).

4 Experiments and Results

This section details the performance of our distilled student models against teacher models and other
relevant baselines. All results correspond to the best-performing checkpoint for each configuration
(selected as described in Section[3.3). Our distilled models, which we call TiME (Tiny Monolingual
Encoders), follow the naming convention TiME—-{lang}-{size} (when distilled from XLM-R-
Large). Size codes denote the architectures defined in Section 3.2: ‘xs‘, ‘s‘, and ‘m‘. We re-evaluated
all baselines, including the original HPLT original models ({lang}-hplt-og). Unless noted,
figures aggregate over a seven-language set intentionally spanning low/medium/high resource tiers
(ga; ur/da/hu; en/de/fr), to ensure conclusions hold across resource levels.

4.1 Performance on Core NLP Tasks

Table|l| summarizes the performance on core NLP tasks. The TiME-m models, our best-performing
students, retain 98.4% of the average score of the ‘XLM-R-Large* teacher (Table[T). This is achieved
with a 58% reduction in parameter count (236M vs. 560M).



Lat. T-put J/sample
Impr. Impr. Optim  Impr.
Model #P (M) #L da de en fr ga hu ur Avg (x) (x) J/sample (Xx)

Baselines

HPLT (oureval) 150 12 88.8 89.4 91.1 93.7 80.3 709 75.6 843 10 16 0.61 1.3x
XLM-R-Base 278 12 91.0 89.5 91.5 94.2 81.0 80.0 879 879 19 32 0.25 3.3x%
mMiniLM?* 107 6 86.1 84.4 88.5 91.4 70.2 75.1 85.3 835 3.5 169 0.04 19.4x
XLM-R-Large 560 24 92.4 90.5 92.4 95.1 83.1 81.6 89.0 89.2 1.0 1.0 0.82 1.0x

Our Students

TiME-m 236 6 89.9 88.4 91.1 93.2 82.4 80.8 88.1 87.7 39 54 0.12 6.6x
TiME-s 107 6 88.1 86.8 88.7 91.9 77.5 76.9 86.3 852 39 159 0.04 18.7x
TiME-xs 103 4 86.2 84.8 87.6 91.1 75.8 76.0 86.0 839 5.8 252 0.02 30.2%
*-hplt-m 69 6 88.1 87.0 90.0 91.8 80.2 77.8 74.5 842 3.8 4.1 0.18 4.5%

4 L6-H384 version.

Table 1: Average NLP task scores and efficiency metrics for all student models and baselines.
The final ‘Avg‘ column is the macro-average score across languages. Latency and throughput
are shown as relative speedup factors (x), computed against XLM-R-Large (set to 1.0x).
For latency, higher means faster (e.g., 2.0x means half the latency of XLM-R-Large). For
throughput, higher means more sentences/sec. Throughput is measured at the optimal batch size
for each model. Best student and best overall scores per language are bolded.

Our approach shows strong performance in varied settings, including the low-resource language
Irish (ga) and the morphologically complex Hungarian (hu), where the models recover over 99%
of the teacher’s score. Our distilled TiME-m models consistently outperform the ‘mMiniLM-L6-
H384° baseline across all languages (Table[I)). They achieve performance comparable to the larger
XLM-R-Base model (278M parameters) while being approximately 15% smaller (236M parameters).

While the overall parameter savings over XLM-R-Base appear modest (15%), this is misleading:
A large fraction of the total parameters is in the linear embedding layer that is shared with the
teacher. The reduction in the actual Transformer layers, the part responsible for most inference time,
is substantially larger. This leads to greater real-world efficiency gains than the parameter count
suggests. In practice, our TIME-m models achieve up to 1.6x speedup over XLM-R-Base and 5.5 x
over XLM-R-Large (see Table [2). Detailed per-task results for all configurations are available in

Appendix [A]

4.2 Speed

A key goal of our work is to produce models that are not only accurate but also fast enough for
processing large amounts of data or for real-time applications. To visualize the performance-efficiency
trade-off, Figure[T| presents the average NLP task scores against inference latency (at batch size 1)
and throughput (at the optimal batch size for each model).

Our distilled TiME-m models, for instance, achieve an average score of 87.71 (vs. 87.86 for XLM-
R-Base) with a latency of 2.9 ms (vs. 5.7 ms) and a throughput of 1799.8 sentences/s (vs. 1079.0
sentences/s). This positions them favorably on the efficiency frontier (approximated by the dashed
line in Figure[I)), delivering performance comparable to XLM-R-Base but with substantially better
efficiency. Our TiME-m models are also significantly faster than the original XLM-R-Large teacher.
Our smaller student models, T1ME-en-s and en-hplt-xs, offer further latency reductions and
throughput improvements, making them suitable for scenarios where speed is the utmost priority. This
demonstrates that our distillation pipeline is effective at creating models with improved performance-
latency and performance-throughput trade-offs.

To situate our models within the landscape of practical NLP tooling, we compare them against
spaCy’s transformer-based pipelines [Honnibal et al.[[2020]] for supported languages. While a direct



Latency Peak TP Opt. J/sample  J/sample

Model Score (ms, BS=1) (s/s) Peak Speedup (min. over BS) Impr. (x)
Baselines

HPLT (our eval) 84.27 11.35 606.7 1.6x 0.6122 1.3x
XLM-R-Base 87.86 5.68 1168.5 3.2x 0.2532 3.3x
mMiniLM-L6-H384 83.46 3.12 6229.4 16.9x 0.0425 19.4 x
XLM-R-Large 89.15 11.04 369.3 1.0x 0.8260 1.0x
Our Students

TiME-m (Ours) 87.71 2.85 1977.2 5.4x 0.1249 6.6x
TiME-s (Ours) 85.16 2.86 5871.0 15.9% 0.0443 18.7x
TiME-xs (Ours) 83.92 1.89 9321.1 25.2x 0.0274 30.2%
*-hplt-m (Ours) 84.22 2.90 1515.6 4.1x 0.1854 4.5%

Table 2: Performance—efficiency trade-off. Models are compared on their average performance
score across all languages against key efficiency metrics. Latency is the averaged inference time
at batch size 1. Peak Throughput is the average of the maximum achievable throughput for each
model on each language, measured at its language-specific optimal batch size. We report the minimal
(optimal) J/sample over batch size for each model and the improvement vs. XLM-R-Large.

comparison is difficult, since a key contribution of our research is a distillation pipeline for languages
that spaCy does not support off the shelf, Appendix [A.T] provides detailed results for overlapping
cases, showing that our models offer similar performance at significantly improved latency and
throughput.

4.3 Energy efficiency

So far, we have looked at efficiency in terms of inference speed. Another effect of reducing model
size can be improved energy efficiency, which we focus on in this section.

Energy consumption and speed. Figures [2 and [3| show energy per sample (J/sample) against
throughput and latency, respectively, at different batch sizes. We only include a selection of models in
the plots for readability reasons; numbers for all models can be found in Tables[T|and[2] We see that the
speed improvements of our TiME models translate into substantial energy efficiency improvements
across batch sizes. Within a model, energy efficiency generally improves with throughput, though
interestingly at the very highest throughput efficiency suffers slightly.

Score-energy trade-off. Figure ] summarizes the accuracy—efficiency landscape when each model
is operated at its most energy-efficient batch size. The TiME models sit at the Pareto frontier, pairing
low energy consumption per sample with strong task scores.

4.4 Question Answering

We evaluate the English and German models on the MLQA benchmark |Lewis et al.|[2020] to assess if
the distillation preserves knowledge beyond core NLP tasks (the two languages that overlap with those
covered by MLQA). The results in Table [3|show that the distilled models retain a large fraction of
their teacher’s performance. The TiME-en—m student, for instance, closes much of the performance
gap to ‘XLM-R-Large*, indicating that the distillation process successfully transfers the ability to
perform extractive question answering.

Limitations

While our study demonstrates a practical pipeline for creating efficient Transformer-based encoders,
we acknowledge several limitations.
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Figure 2: Energy per sample vs. throughput, averaged across the seven core languages. Each
curve traces increasing batch sizes (markers annotated with the batch size). Lower is better on the
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Figure 3: Energy per sample vs. latency for different models and batch sizes. The plot is log-log
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Architectural Choices and Data. Our selection of student model sizes (xs, s, m) was made to
provide a practical set of options along the efficiency-performance curve. However, a more systematic
architectural search was beyond the scope of this work and could yield further Pareto-optimal models.
Similarly, we did not perform an ablation on the minimum amount of monolingual data required for
effective distillation, which would be valuable for guiding future work on extremely low-resource
languages.

NLP Score Differences Between Languages. Our evaluation highlights that the performance-
efficiency trade-off varies across languages. For instance, the performance drop for low-resource
Irish (ga) and morphologically complex Hungarian (hu) was more pronounced in our smallest models,
suggesting that certain linguistic properties might be more challenging to retain during compression.
A deeper analysis of these trade-offs is a promising direction for future work.
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Language Model F1 EM

TiME-en-xs 70.00 56.22

English (en) TiME-en-s 75.07 61.46
TiME-en-m 81.15 67.69

XLM-R-Base 81.33 67.92

XLM-R-Large 84.32 71.13

TiME-de-xs  50.34 33.74

German (de) TiME-de-s 56.70 39.14
TiME-de-m  61.05 42.28

XLM-R-Base 59.95 41.95

XLM-R-Large 65.81 45.87

Table 3: MLQA results for English and German. Student models (*-s‘ and ‘-m*) are compared
against the teacher.

Distillation Hyperparameters. The number of relation heads (A,.) was set following the original
MiniLMv2 work. A detailed ablation on this hyperparameter for each language could provide further
optimization but was not performed in this study.

5 Conclusion

In this work, we have shown that monolingual distillation from multilingual teachers can lead to
very efficient but still powerful models for common NLP tasks. We have built a pipeline that is
practical and effective across a wide range of languages, including those that are typically underserved.
The resulting models are immediately useful in real-world scenarios, offering a drop-in, efficient
alternative to legacy NLP pipelines.

Our models lie on the Pareto frontier of NLP taks performance on one hand and speed and energy
efficiency on the other. Our extensive benchmarking allows practitioners to make informed decisions
about which model to choose for their particular needs.
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A Additional Figures and Detailed Results

In Table[5| we show the detailed per-task and per-language performance on the NLP tasks. Note that
for English we also compare with en-MiniLM-L6-H768 |Wang et al.|[2021]], a model distilled from
the monolingual RoOBERTa-Large. Figures [(HI2]are per-language versions of Figure[I] showing the
trade-offs between NLP score on one hand, and latency and throughput on the other hand. Figure[3]
shows the relationship between batch size and throughput.

A.1 Comparison with spaCy

To situate our models within the landscape of production-ready tools, we benchmark them against
spaCy [Honnibal et al.,2020], a widely-adopted industry standard for efficient NLP. It is important to
note that SpaCy’s transformer pipelines (_t r £) are not novel architectures but provide a consistent,
production-optimized API for fine-tuning established pre-trained models. For the languages we eval-
uate, the underlying models are well-known encoders: the English pipeline (en_core_web_trf)
is based on RoBERTa [Liu et al.,|2019al]; the German pipeline (de_dep_news_trf) uses a cased
German BERT [Chan et al., 2019], itself based on the original BERT architecture [Devlin et al.|
2019a]; the French pipeline (fr_dep_news_trf) leverages CamemBERT [Martin et al., 2019];
and the Danish pipeline (da_core_news_trf) is built upon DanskBERT [Sn&bjarnarson et al.}
2023]]. We compare our T1ME-m, TiME-s, and TiME-xs models against these pipelines.

The results are presented in Table[d] with corresponding plots in Figures[6} [8] [9]and[T0] In terms of
accuracy, our medium-sized T1iME-m models are highly competitive, achieving scores that are close
to spaCy’s _t rf models. This demonstrates that our distillation pipeline can produce models that
match the quality of state-of-the-art production systems.

The primary advantage of our distilled models becomes evident in the efficiency metrics. For real-time
applications, our models demonstrate significantly lower latency. Our TiME—-xs model has less than
half the latency of its spaCy counterpart (e.g., 1.9 ms vs. 5.1 ms for English). Throughput gains at
each model’s optimal batch size are substantial: TiME-en-xs reaches 6361.6 vs. 1330.0 s/s on
English (4.78 x), TIME-de—-xs 10651.7 vs. 2046.3 on German (5.21x), TIME-fr—-xs 5077.3 vs.
1270.5 on French (4.00x), and TiME—-da-xs 5794.3 vs. 1494.5 on Danish (3.88 x). This makes our
models well-suited for large-scale batch processing where computational cost and processing time
matter.

Language Model Avg Score Latency (ms) Throughput (s/s)
TiME-en-m (ours) 91.11 2.9 1539.3
English TiME-en-s (ours) 88.72 29 4427.1
TiME-en-xs (ours) 87.57 1.9 6361.6
en_core_web_trf (spaCy) 91.30 5.1 1330.0
TiME-de-m (ours) 88.44 29 3471.2
German TiME-de-s (ours) 86.75 2.9 7545.8
TiME-de-xs (ours) 84.76 1.9 10651.7
de_dep_news_trf (spaCy) 89.20 4.9 2046.3
TiME-fr-m (ours) 93.22 2.9 1454.4
TiME-fr-s (ours) 91.88 2.9 3589.8
French .
TiME-fr-xs (ours) 91.09 1.9 5077.3
fr_dep_news_trf (spaCy) 93.10 5.1 1270.5
TiME-da-m (ours) 89.92 2.9 1546.8
Danish TiME-da-s (ours) 88.10 2.9 4264.2
TiME-da-xs (ours) 86.18 1.9 5794.3
da_core_news_trf (spaCy) 90.80 5.6 1494.5

Table 4: Comparison with spaCy pipelines for English, German, French, and Danish. *Avg Score’
is the average performance across four NLP tasks. Latency is measured in ms at batch size 1, and
Throughput is the value at the optimal batch size for each model in sentences/sec.
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Figure 5: Latency vs. throughput for different batch sizes. Language-specific values were obtained

on the Wikipedia datasets for the 7 core languages

Table 5: Detailed NLP task performance for all 16 languages. All scores on a 0—100 scale.

Language Model ID NER AllTags Lemma LAS Avg Score
TiME-xs 839  87.95 7536 77.39 81.15
— TiME-s 86.1 89.11 76.25  79.05 82.63
k) TiME-m 872  91.71 84.35 8233 86.40
Q
=) XLM-R-Large 88.4  94.28 87.99  84.03 88.67
z XLM-R-Base 86.7  92.60 84.46 8244 86.55
mMiniLM-L6-H384 844  86.51 7376 77.09 80.44
mMiniLM-L12-H384 85.8  88.52 74.84  79.01 82.04
TiME-xs 87.7 91.52 9146 74.04 86.18
TiME-s 89.2  92.80 9232 76.11 87.61
TiME-m 90.7  95.51 93.76  81.01 90.25
= da-hplt-xs 83.6  92.77 94.10  59.29 82.44
= da-hplt-m 88.7  95.71 9592 7224 88.14
2 XLM-R-Large 932 9691 9563 8437  92.53
8 XLM-R-Base 90.9  95.82 94.85  82.61 91.05
mMiniLM-L6-H384 88.3  90.11 91.62 74.70 86.18
mMiniLM-L12-H384 899  91.53 9201 7749 87.73
da-hplt-og 92.1 95.15 92.66 7541 88.83
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Table 5 — continued from previous page

Language Model ID NER AllTags Lemma LAS Avg Score
TiME-xs 829  80.80 94.50  80.82 84.76
TiME-s 858  83.26 94.87  82.97 86.73
TiME-m 869  86.79 96.10 84.79 88.65
m de-hplt-xs 80.1 82.42 9482  75.18 83.13
3;/ de-hplt-m 84.1 86.88 96.11  81.05 87.03
g XLM-R-Large 88.1  90.17 9698  86.43 90.42
5 XLM-R-Base 872  88.73 96.48  85.54 89.49
© mMiniLM-L6-H384  83.8  78.64 9433  80.69 84.37
mMiniLM-L12-H384 85.0  81.54 94.84  83.02 86.10
de-hplt-og 89.5 8845 94.85 84.56 89.34
TiME-xs 76.5  93.25 96.23  84.15 87.53
TiME-m 809  95.94 97.30  90.27 91.10
en-hplt-xs 75.7  93.64 96.79  81.93 87.02
= en-hplt-m 79.0 9572 97.44  88.42 90.14
o
= XLM-R-Large 83.0  96.97 97.71  92.06 92.44
= XLM-R-Base 815  96.31 97.44  90.69 91.48
2 mMiniLM-L6-H384  79.2  93.17 9640 85.34 88.53
= mMiniLM-L12-H384 813  94.39 96.65 87.75 90.02
en-MiniLM-L6-H768 81.5  95.72 9695 89.44 90.90
en-hplt-og 834  96.11 96.71  89.33 91.39
TiME-xs 87.2  93.30 9737 86.14 91.00
_ TiME-s 889  93.74 97.55 87.71 91.97
g TiME-m 88.6  94.80 98.36  89.34 92.78
Z XLM-R-Large 90.2  95.75 99.10  91.98 94.26
g XLM-R-Base 89.5  95.06 98.40  89.37 93.08
& mMiniLM-L6-H384 884  93.20 97.45  87.09 91.54
mMiniLM-L12-H384 899  94.14 97.71  88.54 92.57
es-hplt-og 909  95.06 97.99  89.98 93.48
TiME-xs 84.4  95.79 96.82  87.27 91.07
TiME-s 86.2  96.05 96.99  88.31 91.89
TiME-m 869  97.36 97.83  90.87 93.24
_ fr-hplt-xs 809  95.83 97.39  78.66 88.20
& fr-hplt-m 82.8  97.01 98.07 86.54 91.11
=
2 XLM-R-Large 89.2  97.76 98.40  93.96 94.83
E XLM-R-Base 88.8  97.41 98.14 9240 94.19
mMiniLM-L6-H384  86.2  94.89 96.65 87.76 91.37
mMiniLM-L12-H384 87.1  95.82 97.19  89.76 92.47
fr-hplt-og 89.8 9745 96.890 91.71 93.96
TiME-s 68.9 7750 90.62  73.51 77.63
TiME-m 78.0  82.00 93.54 7794 82.87
= ga-hplt-m 73.5  83.08 9383 7043 80.21
i’o XLM-R-Large 80.5  84.27 93.69  79.36 84.45
2 XLM-R-Base 75.2  80.68 91.84 76.28 81.00
- mMiniLM-L6-H384  52.8  72.39 86.22  70.00 70.35
mMiniLM-L12-H384 61.8 7541 87.57 72.84 74.40
ga-hplt-og 76.8  83.94 90.23  70.39 80.34
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Table 5 — continued from previous page

Language Model ID NER AllTags Lemma LAS Avg Score
TiME-xs 829  88.05 98.55  88.75 89.56
TiME-s 853  89.13 98.63  89.65 90.68
=) TiME-m 879  91.77 98.78  91.69 92.53
-\_5/ XLM-R-Large 875 9293 98.83 9253 92.95
g XLM-R-Base 875  92.12 98.76  91.57 92.49
= mMiniLM-L6-H384  81.3  86.90 98.46  88.71 88.84
mMiniLM-L12-H384 823  88.64 98.57  90.03 89.89
hi-hplt-og 89.8 9241 98.65 91.09 92.99
TiME-xs 88.0  73.01 81.15 6197 76.03
= TiME-s 899  73.74 81.61 62.43 76.92
=) hu-hplt-m 88.0  82.89 86.63 52.74 77.56
=
£ XLM-R-Large 926  86.27 87.69 5991 81.62
5 XLM-R-Base 91,5  84.15 86.47 5792 80.01
! mMiniLM-L6-H384  88.6  71.92 80.93  58.89 75.09
= mMiniLM-L12-H384 89.5  73.88 8224  61.12 76.68
hu-hplt-og 932  77.19 82.73  30.43 70.89
TiME-xs 86.4  96.22 96.34  88.33 91.82
TiME-s 87.7  96.41 96.34  89.40 92.46
= TiME-m 88.6  97.58 97.890  92.71 94.20
g XLM-R-Large 914  97.89 98.18  94.01 95.37
§ XLM-R-Base 899 97.54 97.77  92.68 94.47
= mMiniLM-L6-H384  87.0  95.44 9599  88.68 91.78
mMiniLM-L12-H384 88.2  96.31 96.17  90.79 92.87
it-hplt-og 90.6 97.24 96.58  91.80 94.05
TiME-xs 56.1 89.99 9534 8525 81.67
- TiME-s 623  91.63 9594  87.80 84.42
g TiME-m 632 9474 97.12  90.57 86.41
% XLM-R-Large 66.8  96.14 97.63  92.36 88.23
é XLM-R-Base 664  94.69 9720 9043 87.18
3 mMiniLM-L6-H384  60.4  90.09 9525 8645 83.05
mMiniLM-L12-H384 594  91.02 95.61 87.73 83.44
ja-hplt-og 63.0 9395 96.96  88.94 85.71
TiME-xs 80.8  84.84 90.24  83.63 84.88
> TiME-s 83.6  85.60 90.65 84.63 86.12
=2 TiME-m 83.6  87.4l1 9234  86.44 87.45
% XLM-R-Large 88.9  89.05 93.35 88.32 89.90
E XLM-R-Base 86.2  87.91 9271  86.90 88.43
mMiniLM-L6-H384 809  84.42 89.90 83.45 84.67
mMiniLM-L12-H384 82.6  85.22 9045 84.71 85.74
TiME-xs 86.8  92.77 96.96  79.21 88.94
= TiME-s 87.9  93.08 97.09 80.51 89.65
% TiME-m 89.7  93.59 97.67 8246 90.86
§ XLM-R-Large 914  94.10 98.19 84.64 92.09
%” XLM-R-Base 90.1  93.87 97.94 8348 91.35
g mMiniLM-L6-H384  87.8  92.52 96.95  79.68 89.24
A mMiniLM-L12-H384 89.5  93.07 97.06  81.37 90.25
pt-hplt-og 91.2  93.86 97.27 8294 91.32
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Table 5 — continued from previous page

Language Model ID NER AllTags Lemma LAS Avg Score
TiME-xs 82.6 90.13 9532  86.98 88.76
R TiME-s 854 91.85 96.02  90.01 90.82
2 TiME-m 83.7 93.18 97.15 91.48 91.38
.g XLM-R-Large 89.2 95.04 98.25  93.85 94.08
§ XLM-R-Base 87.8 94.49 97.79  93.23 93.33
(7 mMiniLM-L6-H384 84.7 90.28 95.40  89.24 89.91
mMiniLM-L12-H384  85.9 90.96 95.04  90.46 90.59
ru-hplt-og 89.3 94.77 9742  93.22 93.68
TiME-xs 93.0 78.52 96.60 75.91 86.00
TiME-s 92.9 78.41 96.26  77.01 86.14
TiME-m 95.3 80.16 96.99 79.91 88.09
o ur-hplt-xs 87.1 62.15 92.83  54.88 74.24
% ur-hplt-m 87.9 69.97 95.00 63.35 79.06
g XLM-R-Large 95.1 80.80 97.01 81.97 88.72
XLM-R-Base 94.9 79.79 96.72  79.99 87.85
mMiniLM-L6-H384 91.9 77.53 96.17 75.72 85.33
mMiniLM-L12-H384  93.2 78.49 9635 77.73 86.44
ur-hplt-og 90.4 63.06 92.58  53.13 74.79
TiME-xs 68.4 91.23 99.83  66.72 81.55
PR TiME-s 70.8 91.65 99.83  68.26 82.63
@ TiME-m 73.0 94.31 99.890  76.18 85.84
::3’ XLM-R-Large 75.5 95.86 99.91 80.70 87.99
g XLM-R-Base 76.3 95.01 99.88  76.49 86.92
S mMiniLM-L6-H384 68.1 91.57 99.84  67.08 81.65
mMiniLM-L12-H384  69.9 92.43 99.84  70.15 83.08
zh-hplt-og 75.0 92.82 99.81  61.99 82.41
Average NLP Score per Language
Params Avg Latency Throughput
Model ™M #.. 58 S 8 § ¢ & &% = 2 = = £ & B 5 ® (16) Impr(x) Impr(x)
Baselines
HPLT 150 12 - 88.8 89.3 91.4 93.5 94.0 80.3 93.0 70.9 94.0 85.7 — 91.3 93.7 74.8 82.4 87.4 0.9 25
XLM-R-Base 278 12 86.5 91.0 89.5 91.5 93.1 94.2 81.0 92.5 80.0 94.5 87.2 88.4 91.3 93.3 87.8 86.9 89.3 2.0 32
mMiniLM-L6-H384 107 6 80.4 86.2 84.4 88.5 91.5 91.4 70.3 88.8 75.1 91.8 83.0 84.7 89.2 89.9 853 81.7 85.1 3.7 154
XLM-R-Large 560 24 88.7 92.5 90.4 92.4 94.3 94.8 84.5 93.0 81.6 95.4 88.2 89.9 92.1 94.1 88.7 88.0 90.5 1.0 1.0
Our Models (TiME)
TiME-*-m 236 6 86.490.2 88.7 91.1 92.8 93.2 82.9 92.5 81.25 94.2 86.4 87.5 90.9 91.4 88.1 85.8 89.5 3.7 6.3
TiME-*-s 107 6 82.6 87.6 86.7 88.9 92.0 91.9 77.6 90.7 76.9 92.5 84.4 86.1 89.7 90.8 86.1 82.6 86.6 3.9 153
TiME-*-xs 103 4 81.2 86.2 84.8 87.5 91.0 91.1 75.5 89.6 76.0 91.8 81.7 84.9 88.9 88.8 86.0 81.5 86.1 54 232
*#-hplt-m 69 6 - 8.18709.1 - 91.18.2 - 776 - - - - - 791 - 848 37 6.6

Table 6: Complete summary of average NLP task scores and efficiency metrics across all
16 evaluated languages. The ‘Latency Improvement‘ and ‘Throughput Improvement‘ metrics are
calculated relative to XLM-R-Large. Empty cells (‘—°) indicate that data for a specific model-language
combination was not available. The ’*’ is a placeholder for the language, and *-hplt-m refers to the
models that were distilled from the HPLT model as a Teacher.

B Downstream Task Datasets

Our evaluation relies on established benchmark datasets for each NLP task. For part-of-speech (POS)
tagging, lemmatization, and dependency parsing (LAS), we use specific treebanks from Universal
Dependencies (UD) [de Marneffe et al., [2021f], primarily following the selections in the HPLT
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Figure 6: Performance-efficiency trade-off for English models at batch size 1. For the latency
plot (a), the optimal position is the upper-left (high score, low latency). For the throughput plot (b),
the optimal position is the upper-right (high score, high throughput).
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Figure 7: Performance-efficiency trade-off for Hungarian models at batch size 1. For the latency
plot (a), the optimal position is the upper-left (high score, low latency). For the throughput plot (b),
the optimal position is the upper-right (high score, high throughput).
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Figure 8: Performance—efficiency trade-off for German models at batch size 1. For the latency
plot (a), the optimal position is the upper-left (high score, low latency). For the throughput plot (b),

the optimal position is the upper-right (high score, high throughput).
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Figure 10: Performance—efficiency trade-off for French models at batch size 1. For the latency
plot (a), the optimal position is the upper-left (high score, low latency). For the throughput plot (b),
the optimal position is the upper-right (high score, high throughput).
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Figure 11: Performance—efficiency trade-off for Urdu models at batch size 1. For the latency plot
(a), the optimal position is the upper-left (high score, low latency). For the throughput plot (b), the
optimal position is the upper-right (high score, high throughput).
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Figure 12: Performance—efficiency trade-off for Irish models at batch size 1. For the latency plot
(a), the optimal position is the upper-left (high score, low latency). For the throughput plot (b), the
optimal position is the upper-right (high score, high throughput).

evaluation framework [Pyysalo et al.,2024]]. For named entity recognition (NER), we predominantly
use language-specific splits from the WikiAnn dataset [Rahimi et al.| 2019, Pan et al.l 2017], unless a
more standard dataset is conventionally used for a specific language. The details are as follows:

B.1 Arabic (ar)

* POS, Lemma, LAS: UD Arabic-PADT Hajic et al.|[2004], [Universal Dependencies con{
tributors| [2025a]

* NER: WikiAnn Arabic split|Rahimi et al.|[2019].

B.2 Chinese (zh)

* POS, Lemma, LAS: UD Chinese-GSD |Universal Dependencies contributors| [[2025b|]
* NER: WikiAnn Chinese split|Rahimi et al.| [2019].

B.3 Danish (da)

¢ POS, Lemma, LAS: UD Danish-DDT [Johannsen et al.| [2015]]
* NER: WikiAnn Danish splitRahimi et al.|[2019].

B.4 German (de)

* POS, Lemma, LAS: UD German-GSD McDonald et al.|[2013]], Borges Volker et al.|[2019]
* NER: WikiAnn German split|Rahimi et al.| [2019].

B.5 English (en)

* POS, Lemma, LAS: UD English-EWT Silveira et al.[[2014]]
* NER: WikiAnn English split Rahimi et al.| [2019].
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B.6

B.7

B.8

B.9

B.10

B.11

B.12

B.13

B.14

B.15

Spanish (es)

* POS, Lemma, LAS: UD Spanish-AnCora [Taulé et al.| [2008], [Universal Dependencies|
contributors| [20251

* NER: WikiAnn Spanish split Rahimi et al.| [2019].

French (fr)

¢ POS, Lemma, LAS: UD French-GSD |Guillaume et al.|[2019]], McDonald et al.| [2013]]
* NER: WikiAnn French split[Rahimi et al| [2019].

Irish (ga)

e POS, Lemma, LAS: UD Irish-IDT [Lynn and Foster] [2016]], Lynn et al.| [2025
* NER: WikiAnn Irish split|Rahimi et al.[[2019].

Hindi (hi)
* POS, Lemma, LAS: UD Hindi-HDTB [Bhatt et al.| [2009]], Universal Dependencies contrib+

* NER: WikiAnn Hindi split Rahimi et al.|[2019].

Hungarian (hu)
* POS, Lemma, LAS: UD Hungarian-Szeged [Vincze et al|[2010], [Farkas et al|[2025
* NER: WikiAnn Hungarian split|Rahimi et al.[[2019].

Italian (it)
* POS, Lemma, LAS: UD Italian-ISDT Bosco et al.| [2014], |{Universal Dependencies contrib{
(2025d]

* NER: WikiAnn Italian split|Rahimi et al.[[2019]].

Japanese (ja)
* POS, Lemma, LAS: UD Japanese-GSD |Universal Dependencies contributors| [2025¢]]
* NER: WikiAnn Japanese split Rahimi et al.|[2019].

Korean (ko)

* POS, Lemma, LAS: UD Korean-Kaist |Chun et al.|[2018]], Universal Dependencies contrib{
[2025f]

* NER: WikiAnn Korean split|Rahimi et al.|[2019].

Portuguese (pt)

* POS, Lemma, LAS: UD Portuguese-CINTIL [Branco et al.|[2012], [Universal Dependencies|
contributors| [2025g]

* NER: WikiAnn Portuguese split [Rahimi et al.| [2019].

Russian (ru)

e POS, Lemma, LAS: UD Russian-SynTagRus [Boguslavsky et al| [2000]], [Universal Depen{
[dencies contributors| [2025h]]

* NER: WikiAnn Russian split|[Rahimi et al.| [2019].
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B.16 Urdu (ur)

* POS, Lemma, LAS: UD Urdu-UDTB [Bhat et al.| [2017]], Bhat and Zeman|[2025]), Palmer|
[2009]
» NER: WikiAnn Urdu split Rahimi et al.|[2019].

For question answering tasks in English and German, the MLQA dataset was used Lewis et al.|[2020].
The primary distillation corpus for all languages is CulturaX [Nguyen et al., [2023]. Checkpoint

selection relies on development splits from FLORES-200 [Goyal et al., 2022, |Goyal and et al., [2023]]
for Irish, and WMT24++ [Google Research] 2024} [Liang and et al., 2024] for other languages.
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