JumpLM - LLM Benchmarking and Interactive
Performance Monitoring for higher GPU Utilization

Lena Jurkschat Anton Rygin
ScaDS.AI Dresden/Leipzig ScaDS.AlI Dresden/Leipzig
CIDS, TU Dresden CIDS, TU Dresden
lena. jurkschat@tu-dresden.de anton.rygin@tu-dresden.de

Elias Werner
ScaDS.AI Dresden/Leipzig
CIDS, TU Dresden
elias.werner@tu-dresden.de

Abstract

Benchmarking Large Language Model inference allows users to find its fastest
configuration (e.g. model, batch size) tied to their application constraints and
hardware resources. However, this does not necessarily correlate with a high and
sustainable utilization of the available hardware, especially GPUs. Indeed, the
hardware monitoring is usually detached from the inference benchmark, hampering
the identification of resource- and latency-efficient LLM configurations. In this
work, we present JumpLLM, a tool that combines BALI — an inference efficiency
benchmark with JUmPER - an interactive performance monitoring — integrated into
Jupyter Notebooks. JumpLM provides a user-friendly way to deploy different LLM
configurations for inference while monitoring the available hardware utilization. To
this end, it combines hardware metrics (e.g. GPU utilization) with LLM inference
metrics (e.g. tokens-per-second) and provides a novel visualization that gives
actionable insights into the hardware usage and LLM performance. This helps
users to tune LLLM configurations according to the available resources.

1 Introduction

The deployment and use of large language models (LLMs) in HPC have expanded significantly over
the past few years, either for direct HPC usage, such as chatHPC |Yin et al.|(2025) or leveraging HPC
infrastructure in various research domains. Inference frameworks like Transformers Huggingface Wolf
et al.|(2020) or VLLM [Kwon et al.|(2023)) facilitate the deployment of LLMs for inference tasks. With
those developments, the GPU accelerated inference of models has become a crucial research field,
bringing the underlying GPU and inference efficiency into focus Wan et al.|(2024). In contradictions
to this, recent work has shown that a significant proportion of deep learning applications suffer
from GPU underutilization (e.g. due to insufficient batch sizes)|Gao et al.|(2024). This negatively
affects inference latency while wasting available hardware capacities. High GPU utilization means
more useful computation is performed per unit of energy. This is especially important in HPC and
cloud environments, where unused resources can be shared with other applications, or utilization
can be increased if the user’s own application is able to take advantage of it. Since the majority
of applications today run in such shared environments, achieving high utilization is critical for
maximizing efficiency, reducing operational costs, and enabling more sustainable Al systems Panwar
et al.| (2022)); Suarez et al.| (2025). We suspect, that monitoring the underlying hardware is a hurdle or
unseen optimization factor within the LLM and Al community. Furthermore, deploying an inference
test environment is time-consuming, as LLM benchmarks need to be set up first, do not include
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Figure 1: JumpLM - Integration of BALI and JUmPER in Jupyter Service running on HPC infrastruc-
ture.

hardware utilization metrics, and hardware monitoring - if available - is often decoupled from LLM
execution. Therefore we introduce JumpLM that bridges this gap by merging these perspectives
into a single tool, seeking to raise greater awareness within the LLM community for the underlying
hardware usage.

JumpLM provides hardware performance and LLM inference metrics through interactive visualiza-
tions within Jupyter Notebooks, enabling users to identify the most effective deployment configu-
rations for their LLM workloads on HPC systems. JumpLM is built upon two foundational tools:
JUmPER (Jupyter meets Performance) [Werner et al.|(2024) and BALI (Benchmark for Accelerated
Language Model Inference) Jurkschat et al.| (2025)), integrating them through a dedicated Jupyter
extension. This integration provides a new perspective on LLM performance by combining evaluation
metrics and visualizations, and offers the following key contributions: (D Interactive inference testing
and visualization in Jupyter notebooks with respect to available hardware ) Improved comprehension
of hardware utilization driving factors within the LLM inference setup through performance graphs
and @ Explorative configuration tuning for resource-efficient and fast LLM inference deployments.
With JumpLM we foster a sustainable hardware usage within the LLM community through an im-
proved GPU utilization. To achieve this we provide a user-friendly test-interface that tackles inference
speed and GPU usage as tightly coupled optimization factors. Through a conventional batch size
scaling scenario, we provide a use-case, showing how the combined performance view can either
reveal capacities for accelerating the inference further or indicate the use of a less powerful GPU.

2 JumpLM

JumpLM integrates the BALI benchmark for language model inference with JUmPER, a tool to enable
performance measurements and visualization in Jupyter. This integration provides a novel interface
for visualizing hardware performance data alongside relevant metrics from LLM deployment. By
doing so, it supports identifying the best configuration for a specific LLM and the available HPC
hardware. Next, we will introduce the two tools and demonstrate their interplay.

BALI is a benchmarking framework to address the growing need for standardized, comprehensive eval-
uation of LLM inference efficiency. As LLMs are increasingly used in real-time applications—such
as chatbots, translators, and virtual assistants—efficient and fast inference becomes critical. However,
comparing different inference frameworks has been challenging due to the lack of standardized
benchmarks and the vast configuration space, including hardware, framework parameters, and dataset
variations. BALI provides an interface to configure those LLM inference framework parameters
comparably, tailored to the user’s application constraints.

JUmMPER |Werner et al.[(2024) provides a Jupyter kernel and IPython extension that support coarse-
grained performance monitoring and fine-grained analysis of user code in Jupyter. The tool collects
system metrics and stores them alongside the code that has been executed. Built-in Jupyter magic
commands provide visualizations of the monitored performance data directly within the Jupyter. An
description of the implementation details, the combined metrics, available functionalities and the

error handling can be found in

illustrates how both tools are integrated into a HPC Jupyter service. BALI and JUmPER are
each available as Python packages and can be installed independently within any Python environment.
This allows us to collect computational performance metrics using JUmPER and LLM-specific
metrics using BALI in parallel. While analyzing the outputs of each tool separately already provides
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Figure 2: JumpLM batch size Scaling Use-Case for OPT 1.3B Zhang et al.|(2022)). Each coloured
segment shows a BALI run using a different batch size. Left: coarse-grained batch size scaling from
1-512 (ascending order) in powers of two (left). Right: fine-grained scaling with a batch size of 150
and 200 based on the maximal feasible batch size of 128 from the coarse grained scaling experiment.
The maximal feasible batch size is marked by the shaded area.

valuable insights into the efficiency of the LLM infrastructure, combining both sets of metrics can
further facilitate their interpretation and increase their overall informativeness.

In JumpLM, we enhance the usability and integration of the tools: we have extended BALI from a
Python module to an installable IPython extension making Jupyter a unified frontend for running
benchmarks and visualizing performance data. Moreover, we have adapted JUmPER to integrate
with BALI to display LLM-specific metrics alongside the collected performance data. Specifically,
JumpLM now plots colourized segments for each benchmarked LLM configuration in a computational
performance plot. The colour of the segment corresponds to the Tokens/Second metric as a heatmap
allowing to seamlessly interact with the information from both tools.

3 Use Case

Choosing the LLM’s size for a specific application comes mainly with considerations concerning the
model’s answer quality regarding specific downstream tasks. However, with the increasing model size
comes a computational and, therefore, latency increase. Having an upper latency limit for inference
within an application, the model’s size and its configuration become crucial. From a sustainability
perspective, monitoring GPU utilization is a vital task in this step. It enables the identification of
underutilized computational resources, which can then be optimized in several ways: 1) by adjusting
the model’s configuration to improve utilization (if beneficial to the application), 2) by sharing the
unused resources, or 3) by transitioning to alternative hardware to reduce economic costs.

Within this use case, we focus on the maximum batch size search for the lowest latency for the 1.38
model from the OPT family |[Zhang et al.| (2022), using the Huggingface Transformers framework.
At the same time, maximizing the GPU memory and its compute utilization supports this search for
optimal inference efficiency and reveals further optimization potential. For our experiments, we set up
OPT 1.3B with a fixed sample input length of 512 and output length of 128 tokens, a batch size range
from 1 —512 in powers of two and executed the model on a single Nvidia H100 GPU (90GB). A single
benchmark run was conducted on 1024 samples. displays JumpLM’s output after running
the benchmark from the Jupyter environment. The left side shows two plots for GPU utilization
(left) and GPU memory utilization (middle) with utilization on the y-axis and execution time of
the benchmark on the x-axis. The single plots are segmented by different colours that correspond
to the different batch size configurations for OPT 1.3B and their respective Tokens/Second metric
as outlined in the colour scale at the top of the plot. The generation speed is colour coded from
blue (low speed) to orange (high speed). Within the tool, the segments are interactively selectable,
such that each configuration can be displayed in detail (see[subsection A.T)). Scaling the batch size
in powers of two is a common practice, although it also exposes residual GPU memory capacity.
Following this practice leads to the GPU running out of memory for a batch size of 256 (see GPU
memory utilization plot, most right segment). Hence, a batch size of 128 was the last feasible batch
size although only 55% of the GPU’s memory has been utilized at that point. Therefore, JumpLM
reveals that the GPUs memory capacity is not fully used. In a second BALI run (Figure 2|right), we



investigated the impact of more fine-grained batch sizes, specifically 150 and 200. This experiment
revealed that utilizing a batch size of 200 results in 85% GPU memory usage, accompanied by an
additional gain of approximately 40 Tokens/s. Notably, our results highlight the limitations of relying
solely on GPU utilization as a metric, as it can be misleading. For instance, at a batch size of 16,
the GPU utilization appears to be nearly 100% with 716 Tokens/Sec and only 11% of the GPU
memory being used. This discrepancy underscores the importance of considering multiple metrics
when evaluating performance. A reason for the high GPU utilization with low Tokens/Sec is that the
utilization reveals the percentage of time one or more kernels have been running on the GPU without
reflecting on the actual computations. Thus, GPU utilization can’t guarantee efficient LLM inference
on a GPU as a stand-alone metric. It’s rather useful as a first impression on the inference efficiency,
especially when users work with even smaller models than one billion parameters or tiny batch
sizes. Hence, the combination of text generation speed (token/s), GPU utilization and GPU memory
usage is a useful combination to reveal the maximum inference efficiency. Summarized, JumpLM
reveals leftover hardware capacities from any LLM inference configuration in BALI, which can be
addressed by the user e.g. through increasing the model size, input length or changing the GPU to less
potent hardware like an Nvidia A100 GPU (40GB). This way, JumpLM creates a flexible inference
benchmark interface while delivering hardware performance metrics at the same time, increasing the
users awareness for HPC resource utilization, conceivably leading to a more sustainable GPU usage.

4 Related Work

Our work combines the benchmarking of LLM inference efficiency with hardware performance
monitoring and combined visualization in an interactive environment supporting high-throughput text
generation along with maximum hardware usage. Benchmarking LLM inference throughput as well
as text generation speed is an increasingly emergent topic. Made efforts include MLPerf Reddi et al.
(2019) for measuring maximum inference speed across deployment scenarios, LLM-Inference-Bench
Chitty-Venkata et al.| (2024) for evaluating the token throughput under varying hyperparameters and
hardware, LLM-Perf |Waleed Kadous, Kyle Huang, Wendi Ding, Liguang Xie, Avnish Narayasn
and Ricky Xu|(2023)) for benchmarking LLM APIs, and VLLM Kwon et al.|(2023)), a widely used
inference engine that provides a benchmark suite for testing VLLM configurations and hardware.
Other work, like the work from Martinez [Martinez| (20235)), elaborates on the throughput under
different hyperparameters such as GPU count and generation as well as the batch size. BALI, a
benchmark for accelerated inference Jurkschat et al.|(2025)), used in this work, allows for comparing
various inference frameworks along with models and configurations on a set GPU. However, none of
the above-mentioned work include hardware utilization metrics.

In HPC, a variety of tools are typically available for analysing application performance. Node-level
monitoring solutions, such as Pika Dietrich et al.|(2020) or TACC stats |[Evans et al.| (2014),provide
coarse-grained performance insights and performance analysis tools, such as Score-P [Kniipfer et al.
(2012), HPCtoolkit|/Adhianto et al.|(2010) or framework-specific profilers like the PyTorch profiler
offer detailed insights into an application’s behaviour. However, these tools are not designed to fit into
interactive and application specific workflows like LLM inference benchmarking. JUmPER |Werner
et al.| (2024) provides performance insights in Jupyter notebooks and displays performance graphs in
Jupyter. However, it does not reflect on application or LLM specific metrics.

5 Conclusion and Future Work

Investigating hardware usage and LLLM specific metrics jointly is crucial for fast responses and
resource-efficient LLMs deployment on HPC. To the best of our knowledge, no tool tailored for such
an investigation was available within the HPC community. Our novel tool, JumpLM, supports HPC
practitioners and computational scientists with a user-friendly Jupyter interface for benchmarking
LLMs and displaying results with integrated visualisations of hardware usage and LLM text generation
metrics for different LLM configurations. This allows users to easily identify suitable parameters for
their LLMs and available hardware. For example, they can identify the configuration that achieves
the highest number of Tokens/s for the required LLM, given the available GPU memory. We believe
that JumpLM provides a valuable interface for resource-efficient deployments of LLMs. The source
code publicly available via JumpLM[ﬂ

"https://anonymous.4open.science/t/BALI-5585/README.md
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In the future, we will also enable to normalize the text generation speed by the hardware utilization to
further point out configurations, that do not keep the GPU sustainably busy. We additionally plan to
enrich JumpLM with user recommendations for LLM configurations, helping to improve the hardware
utilization and text generation speed. Furthermore, metrics like token throughput, time-to-first token
or model loading time that are available within BALI will be included.
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A JumpLM Implementation Details

A.1 Visualizaton Interface

The JumpLM interface enables visualization and analysis of model execution and system performance
within Jupyter environments (see [Figure 3). Through the %perfmonitor_plot command, the
recorded hardware activity is displayed. The hardware metric is selected via a drop down menu, while
the inference performance of the underlying BALI run is represented by a colorbar indicating text
generation speed in Tokens/second. The BALI segments display can be interactively turned on and off
via a dedicated control element. To facilitate comparability between different %bali_run executions,
the colorbar’s minimum and maximum values can be adapted to enforce consistent scaling. Periods
of GPU idling can be explicitly displayed, thereby revealing erroneous BALI run segments together
with their corresponding error outputs (see [subsection A.4). For more detailed inspection, individual
BALI run segments can be selected to expose their configuration parameters as well as their exact
tokens per second and overall latency.
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Figure 3: Visualization Interface of JumpLM in a Jupyter Notebook

A.2 Magic commands - Integration of Both Tools

Since BALI has been extended from a Python module to an installable [Python extension, it can be
loaded preliminarily into the notebook along with JUmPER. Both extensions provide the following
new or adapted magic commands:

%bali_config Set up BALI configurations, e.g., list of models and frameworks.
%bali_run Run BALI across all combinations of configurations.
%bali_plot Plot inference velocity heat maps for the executed BALI runs.

%perfmonitor_plot Extended JUMPER command, includes individual BALI configuration
runs as segments into the JUmPer performance visualization.

Along with the benchmark execution, the extension redirects its output into a folder named with the
PID of the current IPython session, which enables JUmPER to easily discover BALI data.



A.3 Combined Metrics

In JUMPER, the Y,perfmonitor_plot command has been extended. By default, it draws the time
intervals of the executed cells on the background of the plot. Along with the BALI integration,
this can be changed to drawing segments, which correspond to individual benchmark runs for each
benchmarked BALI configuration. BALI segments on the plot are interactive. Selecting them will
display its respective configuration parameters below the plot. Segments themselves are coloured
with respect to their average text generation velocity in tokens per second, extracted from the BALI
results.

A4 Error Handling

We also implemented an error handling, e.g. if LLM configurations are not feasible to run on the
selected GPU (e.g. out of memory errors). When an individual BALI configuration fails during
it execution, its time stamps are collected and shown in the combined visualization. The specific
error message can be displayed through the interactive interface, similar to the run configuration
parameters.
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