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Abstract

Scaling diffusion models delivers state-of-the-art image quality but at substantial
training and inference cost. Low rank parameterisation effectively attacks both
of these bottlenecks. We empirically find that the effective ranks of weights and
gradients in diffusion models are noise-dependent: as noise increases, updates
concentrate in lower-dimensional subspaces. This makes static low-rank param-
eterisations inefficient, underallocating capacity to low-noise (hard) steps while
overallocating to high-noise (easy) ones. We propose Noise-Adaptive Low-Rank
parameterisation (NA-LR) that uses a nested rank schedule: harder timesteps
with less noise are allocated more rank slices, while easier ones with high noise
require fewer. This is implemented via per-sample masking at training time and
structured rank slicing at inference time. Coupled with a timestep curriculum
learning, which initially restricting the timestep sampling range, we reduce both
inference and training compute by achieving training-time slicing. On DiT-S/2
across CIFAR-10 and CelebA, our method improves FID by 15-26% over static
low-rank at matched compute, cuts inference FLOPs by up to 25% at matched
parameters with negligible FID change, and lowers training FLOPs by up to 12%.

1 Introduction

Diffusion models have rapidly advanced image generation quality [1-4]], aided by the general lesson
that models with more parameters and computing improve generation performance [S]. However,
the iterative denoising process and high-capacity backbones make both pretraining and deployment
expensive. Low rank parameterisation, which factorised the original dense weight matrix into two
low rank matrices, addresses both of these two bottlenecks. However, training low-rank networks
from scratch normally compromises quality [6H9].

Traditional low rank parametersiation for diffusion models treats all timesteps equally, assigns the
same rank to all timesteps. However, our analysis reveals that this uniform treatment is inefficient:
the effective rank of both weights and gradients is noise-dependent: as noise levels increase, they
concentrate in lower-dimensional subspaces (Figure [T). This imply that high-noise (early) steps
require less expressive capacity, while low-noise (late) steps require more (see Appendix [B| for
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Figure 1: Effective rank is noise dependent: as noise increases, updates concentrate in lower-
dimensional subspaces, making uniform rank inefficient.

details). This reveals that traditional uniform-rank parameterisations over-parameterise early steps
and under-parameterise late ones.

To exploit the noise-dependent low-rank structure, we propose Noise-Adaptive Low-Rank parameter-
isation (NA-LR), an architecture-agnostic approach that requires no changes to the training pipeline
or optimisation procedure. NA-LR activates a variable number of rank slices per input timestep via a
nested schedule. During training, we use per-sample masking to gate slices while preserving a static
computation graph; at inference, we slice the low-rank factors directly, reducing FLOPs without
modifying the sampler.

To further reduce training compute, we adopt a timestep curriculum learning technique that initially
restricts sampling to high-noise (easier) ranges and progressively expands to low-noise (harder) ranges,
thereby limits the range of activated parameters within each curriculum, enabling training-time weight
matrices slicing.

On CIFAR-10 (32 x 32) and CelebA (64 x 64) with DiT-S/2 [4], our approach consistently strengthens
the efficiency—quality Pareto front relative to static low-rank training. At matched inference compute
(ISO-Compute), FID improves by 15-26%; at matched parameters (ISO-Param), inference FLOPs
drop by up to 25% with negligible FID change. The curriculum learning enables up to 12% total
training FLOP reduction without degrading final quality.

2 Method

2.1 Noise Adaptive Low Rank Parameterisation
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Figure 2: Illustration of Noise-adaptive low-rank method during training and inference.

Low-rank parameterisation. For any linear layer with weight W € R™*" we use a rank—r
factorisation

W =UV"' UeR™" VeR"™. (1
We replace the Q/K/V/Out projections and MLP in/out in DiT blocks with (T)). To stabilise training,
we adopt spectral initialisation [[L0] and light orthogonality regularisation [[11] on factorised layers.



Nested noise-adaptive rank schedule. Lette{1,...,T} be the diffusion timestep and 7,y the
maximum activatable rank for a layer. We activate only the first ¢ channels of the rank space, where

Tact = (I)(t) = Tmin T ’V(Tmax - Tmin) f(t)—‘7 Tmin = {pmin Tmax—lv f(t) € [07 1]7 2)

®(t) is the rank schedule and its monotonically decreasing with ¢ (high noise = smaller &, with the
boundary conditions ®(0) = rpi, and ®(T") = rpax. The schedule induces a nested property:t; <
to = ®(t1) > D(t2), so slices required at higher noise are a subset of those required at lower noise.
We use a logistic profile for f(¢) in practice; linear alternatives are reported in the Appendix

Here pmin € [0, 1] is a hyperparameter controlling the minimum active rank at the noisiest timesteps,
defined as riyin = | Pmin7|. Unless stated, we set pmin = 0.4 based on a small validation sweep; see
Appendix for selection criteria and sensitivity.

Training-time masking. In standard diffusion training, each sample’s timestep ¢; is drawn uni-
formly from [1, T'], so NA-LR would activate different ranks per sample. To keep a static computation
graph and efficient batching, we apply a per-sample binary mask over rank channels that zeros
out inactive rank slices. For a low-rank layer W = U VT with rank r,we define a binary mask
S € {0,1}"*® for a minibatch of size B as

Sji=1[j < k(t:)], 3)

where k(t;) is denotes the active rank for timestep ¢;. Given inputs X € R"*5 the output is
computed as

Y =U((VTX)eS) € R™*F ()

where © indicates elementwise multiplication along the rank dimension. This formulation enables
per-sample rank gating while preserving a single static forward and backward computation graph.

Inference-time slicing. At sampling time, all examples in a minibatch share the same timestep ¢
and thus the same active rank r,.; = ®(t). We therefore slice off the inactive rank dimention and
compute only with the corresponding active dimention, without modifying the sampling procedure.

Let U € R™*" and V € R™*". For input X € R"*5,

Y = Uh Lirace (V—rlrth) € RmXB' (5)
The per-sample computational cost is then given by
FLOPsiR(Tact) = 2ract(m +n)  vs.  2rmax(m + n) (static low-rank). (6)

This gives a linear reduction with theoretical speedup rmax /Tact> and is independent of batch size B.

2.2 Curriculum for Training-time Slicing

Typical diffusion model training samples timesteps uniformly, so no subset of parameters can be
safely sliced within a batch. To enable training-time savings, we adopt a short timestep curriculum
inspired by Kim et al. [12]. Timesteps are grouped by log-SNR into N clusters Gy, ...,Gn_1
(low — high noise). Training starts with the highest-noise group G _1 and progressively adds
lower-noise groups, ensuring early phases activate only high-noise slices and allowing true training
time slicing.

Progression is triggered when the exponential moving average (EMA) of batch loss plateaus, extend-
ing the curriculum adaptively, as longer curriculum phases yield greater FLOPs savings. At each
stage, we apply progressive uniform sampling—previous groups retain full probability mass while
the new group receives the remainder—to avoid forgetting. A brief learning-rate boost and optimiser
reset stabilise transitions. Full implementation details are provided in Appendix
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Figure 3: Inference cost vs. FID for full-rank, fixed low-rank, and adaptive low-rank (ISO-
Compute/ISO-Param) models on CIFAR-10 and CelebA. Markers show parameter counts.

3 Experiments and Results

3.1 Settings

We evaluate our approach on CIFAR-10 (32x 32, class-conditional) and CelebA (64 x 64, uncondi-
tional) using the DiT-S/2 architecture [4]. For each low-rank layer, we set the rank such that the
number of trainable parameters is reduced to 25%, 50%, or 75% of the original size, and then apply
NA-LR to these layers. Detailed training configurations are provided in Appendix [D-1}

To enable a fair comparison with a static low-rank baseline of rank r,s., we define two NA-LR presets:
ISO-Compute: We select the maximum activatable rank 7,,x such that the schedule-averaged active
rank over sampling steps S satisfies Fll > s P(t) = Thase (100 DDIM steps unless otherwise noted).

This configuration matches inference FLOPs on average. Since the adaptive schedule activates
fewer channels at high noise and more at low noise, the total parameter count may differ slightly.
ISO-Param: Set r,x = Tphase to match the parameter count of the baseline. In this case, realised
FLOPs are typically lower because ®(t) < ry, and decreases with higher noise levels. Details for
each preset model are reported in Appendix[C.2]

3.2 Efficiency and Generation Quality Performance

Table [T] (CIFAR-10) reports the headline comparison under a representative low-rank configura-
tion. At matched inference compute (ISO-Compute), the adaptive model improves FID by 26 %
(5.33 — 3.92) with only a modest increase in parameters. At matched parameters (ISO-Param), it
reduces inference FLOPs by approximately 19% (421 — 343 GFLOPs) with only a marginal change
in FID (5.33 — 5.53). Precision and recall follow similar trends, with recall (diversity) being more
sensitive to aggressive rank reduction.

Figure [B]illustrates the efficiency—quality trade-off across presets and datasets: NA-LR consistently
forms a stronger Pareto front than static low-rank baselines.



Method Inference FLOPs (10°)  Params (M) FID | Precision Recallt Train FLOPs (10'%)

Full Rank 551.674 39.80 3.22 0.82 0.79 1.677
Static Low-rank (75%) 421.256 31.34 5.33 0.76 0.67 1.281
Adaptive (75%, ISO-Compute) 421.159 37.60 3.92 0.80 0.73 1.369
Adaptive (75%, ISO-Param) 343.214 31.34 5.53 0.75 0.66 1.149

Table 1: CIFAR-10 (32x32), DiT-S/2. Inference GFLOPs measured for 100 DDIM steps.

3.3 Curriculum Learning Efficiency Analysis

The proposed curriculum enables training-time slicing, effectively reducing end-to-end training
FLOPs. Across presets and datasets, total training compute decreases by 5-12% with no degradation
in final FID (see Appendix [E.T|for full tables and schedules).

4 Conclusion

In this paper, we uncover a clear noise-dependent low-rank structure in diffusion models and exploit
it with a Noise-Adaptive Low-Rank (NA-LR) scheme that preserves a static computational graph,
enables inference-time rank slicing, and—yvia a brief timestep curriculum—achieves training-time
slicing. NA-LR consistently strengthens the FID—compute Pareto front for low-rank parameterisation,
improving both training and inference efficiency. Overall, NA-LR provides a simple yet effective
route toward more compute-efficient generative diffusion systems.
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A Related Work

Diffusion models. Denoising diffusion models (DDMs) learn data distributions by reversing a
fixed noising process [1L [13]]. Subsequent work improved training and sampling with refined noise
schedules and objectives [[14]], and established state-of-the-art image generation compared to GANs
on standard benchmarks [2] [13]. Latent Diffusion Models compress images with a VAE and run
diffusion in the latent space, improving efficiency without sacrificing fidelity [3]]. Architecturally,
Diffusion Transformers (DiT) substitute U-Nets with ViT-style backbones and conditional layer norm,
showing strong scaling and achieving competitive FID on ImageNet [4].

Timesteps as tasks. A distinctive feature of diffusion models is the explicit timestep index: early
(high-noise, high-t) steps primarily establish global structure, whereas late (low-noise, low-t) steps
refine fine details [16, [17]. The different timestep task focus result in distinct training dynamics for
each diffusion model timestep, including gradient variance and convergence speed [12] . Treating
timesteps as distinct subproblems reveals multi-task interference during training—gradients from



different timesteps can conflict and slow convergence [[19]. Prior work mitigates this with timestep-
aware loss reweighting or sampling [20], gradient projection/decorrelation across timestep-defined
tasks [19], and architectural decoupling into experts specialised for disjoint timestep groups [21]].
These findings motivate allocating model capacity and scheduling optimisation by timestep.

While this literature characterises conflict and specialisation across timesteps, the relationship between
intrinsic rank and timestep remains largely unexplored. In this work, we provide an empirical study
of how intrinsic rank interacts with diffusion timesteps by (i) analysing per-timestep group intrinsic
rank for gradient and weight matrices, (ii) analysing loss sensitivity to rank across the denoising
trajectory, and (iii) measuring subspace overlap between per-timestep gradients. Our results inform
the design of noise-aware, rank-adaptive training strategies used in our method.

Low-rank parameterisation and pretraining. Low-rank parameterisations factorise weight ma-
trices to reduce parameters and FLOPs while providing implicit regularisation. However, directly
training low-rank models often underperforms full-rank counterparts due to optimisation challenges
and rank collapse [6H9]. Explanations include the loss-smoothing benefits of overparameterisa-
tion [22-24]]. To mitigate these issues, prior work proposed spectral initialisation to match full-rank
statistics [10]], orthogonality and tensor decompositions (e.g., Tucker-2 for convolutions) to better
preserve structure [25], and hybrid schedules that warm start or intermittently train in full rank
before projecting to low rank [9]]. Another line of work obtains low-rank factorised networks via
post-hoc compression: train a full-rank model, then apply rank truncation (e.g., SVD) or knowledge
distillation to produce a low-rank proxy, which serves as initialisation for low-rank training process.
This approach typically trades training-time efficiency for stronger final accuracy [26]].

Low-rank diffusion models. Most low-rank efforts in diffusion focus on fine-tuning pretrained
full-rank models with low-rank adapters or compression, reporting substantial memory savings and
competitive downstream quality [27H29]. ELR-Diffusion follows a two-stage pipeline—distilling
a low-rank U-Net from a large base model and then fine-tuning—achieving notable parameter and
memory reductions but incurring FID regressions relative to full rank, especially without distilla-
tion [30]. In contrast, low-rank pretraining from scratch for diffusion remains underexplored and
is the focus of our study, where we address optimisation difficulties without relying on a full-rank
teacher.

Curriculum learning for diffusion. Curriculum learning exposes models to progressively harder
data or tasks to smooth optimisation and accelerate convergence [31]. Recent applications to diffusion
include timestep-ordered curricula for 3D generation [[16], curricula based on denoising difficulty or
convergence [12]], and preference-optimisation curricula ordered by preference-gap difficulty [32].
Broader adaptive curricula in language tasks (e.g., ordering by prompt difficulty) similarly report
convergence and performance gains [33|34]]. Our approach leverages a timestep-aware curriculum
tailored to noise adaptive low-rank training: we deliberately extend the curriculum horizon while
safeguarding final performance, yielding larger training FLOP reductions than curricula designed
primarily for accuracy gains.

Dynamic neural networks with diffusion. Dynamic architectures adjust computation per input
to trade off efficiency and quality [35], using mechanisms such as width/depth adaptation [36, |37]
or temporal/skipped computation [38]. Mixture-of-Experts (MoE) routing scales parameters at
near-constant per-token compute [39,40]] and has been adapted to diffusion backbones. For instance,
MoE-augmented DiTs activate more experts for semantically detailed regions [41], while dynamic
patching varies patch size spatially to reduce FLOPs without degrading image quality [42,43]. Our
approach is orthogonal: we exploit timestep-dependent low-rank structure and allocate capacity
monotonically with timestep via nested rank slices. Unlike MoE or spatial gating, NA-LR introduces
no routers, keeps the sampler/optimiser unchanged, and preserves a static batch-wise computation
graph (per-sample masks only), enabling structured slicing at inference and during a brief curriculum.

Positioning. In sum, our work sits at the intersection of (i) timestep-aware training and spe-
cialisation [[19-21]], (ii) low-rank parameterisation and its optimisation remedies [9, [10L 25], (iii)
curriculum learning tailored to diffusion [12}[16}132], and (iv) dynamic computation for generative
models [41}142]. We differ from prior low-rank diffusion work by pretraining low-rank models from



scratch and by coupling a timestep-dependent dynamic rank with a diffusion-aware curriculum to
improve the efficiency—performance trade-off.

B Empirical Observation Detail

We examine timestep-dependent low-rank structure in diffusion models, analysing both weight space
and gradient space. Our study focuses on three questions:

1. How do the effective ranks of weights and gradients evolve over the training process for
different timestep groups?

2. How much overlap is there between the principal gradient subspaces of different timestep
groups?

3. How sensitive is each timestep group’s loss to low-rank parameterisation?

B.1 Empirical Observation Experiment Setting

All empirical observation experiments in this chapter use the DiT-S/2 architecture [4] with a cosine
noise schedule [14] on the CIFAR-10 dataset [44].

To analyse behaviour across different regions of the diffusion trajectory, we cluster timesteps into
five groups according to their signal-to-noise ratio (SNR), where we use dynamic programming and
set the maximum inner class log SNR difference as the clustering cost. In the context of diffusion
models, the SNR at timestep ¢ quantifies the relative strength of the underlying image signal to the
added noise:

i

SNR(t) = .
()= 1= o
where
t

a; = [J(1-8).

s=1

As t increases, more noise is injected and «; decreases; consequently, SNR(¢) monotonically de-
creases. The SNR for different timestep groups under the cosine noise schedule is shown in Figure

Ml

Sll\(l)(F){ vs Timesteps under Cosine Schedule (DDPM, T=1000)
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Figure 4: Signal-to-noise ratio across timesteps under the cosine schedule.

By clustering similar timesteps, we can reduce variance within groups and facilitate clearer compar-
isons across distinct SNR regimes. We form five timestep groups via dynamic programming, the
resulting groups are shown in Figure[5] This same timestep clustering is used throughout all empirical
observation experiments in this section.
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Timestep Clustering via Dynamic Programming

109 Clusters & Timestep Ranges

mmm Cluster 0: [0-132]

Cluster 1: [133-371]
54 B Cluster 2: [372-652]
B Cluster 3: [653-880]

mmm Cluster 4: [881-999]

Log SNR

—~104

—204

0 200 400 600 800 1000
Diffusion Timestep

Figure 5: Timestep clustering via dynamic programming based on log-SNR.

B.2 Gradient Analysis

In this section, we analyse how the low-rank property of the gradient changes as training progresses
across different timestep groups. We train the DiT-S/2 network until convergence. We sample
the gradient of each timestep group every 100 epochs. To reduce mini-batch noise, we estimate
the gradient by accumulating the loss over 10 batches, each containing 512 samples; we then
backpropagate the loss and evaluate the gradient’s effective rank and Frobenius norm. The results are
shown in Fig. [6]

As shown in Figure [6] we find a clear trend: as timestep increases, both the effective rank and
Frobenius norm of the gradient decrease. Additionally, as training progresses, this trend becomes
more pronounced. The low-rankness of the gradient suggests that the update subspace of higher
timesteps lies in a low-rank subspace. This motivates us to test whether the solutions for higher
timestep groups also lie in progressively lower-rank subspaces.

B.3 Model Weight Analysis

Building upon the observation that the updates for higher timesteps live in progressively lower-rank
subspaces, we proceed to confirm whether the converged solutions of higher timestep groups also lie
in increasingly lower-rank spaces.

To test this, we train five models, each trained exclusively on timesteps from one timestep group
defined in Section[B.T] using the same model size and dataset, until convergence. We evaluate the
average Frobenius norm and effective rank of all the weight matrices in the model. The results are
shown in Figure

From Figure [/} we observe that, despite an initial noisy training stage, models trained on higher-
timestep groups have weight matrices that gradually converge to lower-rank solutions compared with
models trained on lower-timestep groups. The same trend is observed for the Frobenius norms of the
weight matrices, indicating a simpler solution found by models trained on higher timesteps. This
shows that, despite using the same model and dataset, models trained on higher timesteps converge to
lower-rank solutions than those trained on lower-timestep groups.

B.4 Timestep Loss Sensitivity Analysis

Based on the observations from previous sections, we directly compare the per-timestep loss between
a full-rank model and a low-rank parameterised model that reduces 90% of the parameters in each

11
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Figure 6: Effective rank and Frobenius norm of the gradients of different timestep groups across
checkpoints during DiT-S/2 model training.

linear layer, which reduces the total parameter count by 76%. We train both to convergence and
compare the loss for each timestep; the results are shown in Figure|[§]

From Figure[8] we find that, despite having only 24% of the parameters and 15% of the FLOPs, the
loss differences are concentrated in the low-timestep groups, with the high-timestep groups exhibiting
a negligible amount of loss difference. This indicates that higher timesteps correspond to easier
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Figure 7: Effective rank and Frobenius norm of the weight matrices of DiT-S/2 models trained on
different timestep groups.
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Figure 8: Loss difference between a full-rank model and a low-rank parameterised model (76%
compression).

prediction tasks that can be approximated very well with very low-rank parameterisation, whereas
lower timesteps require higher rank to approximate. This directly motivates noise-adaptive low-rank
parameterisation.

B.5 Similarity Analysis

Based on the previous results, we take a step further to analyse the similarities of gradients between
each timestep group throughout the training process.

B.6 Similarity Measurement

We focus primarily on directional similarity. As both gradient and weight matrices are high-
dimensional, directly evaluating the cosine similarity between flattened matrices yields values near 0
or 1 due to the high-dimensional nature of the spaces.

Thus, we evaluate the average principal angles between the subspaces spanned by the column spaces
of the two gradient matrices. This captures how each layer’s output-side directions want to move, and
is invariant to linear reparameterisation of the input, helping us compare gradients across different
timesteps.

To calculate the similarity between a given pair of matrices G; and G, we first perform singular
value decomposition of both matrices:

G =Ux V), Gy = UsS, V.

We then choose the top k singular values s; such that

k
215t
me(m,n) 51'2

i=1

> energy_threshold.

This helps us filter out noise and keep only the dominant directions.

We then take the top-k singular vectors from U; and Us, which gives us U; , and Uy j. These singular
vectors form orthonormal bases for the subspaces spanned by the gradients G; and Gb, i.e., the
subspaces where the gradients “live”.

We then apply SVD to the product of these bases; the singular values of this product are the cosines
of the principal angles between the two subspaces:

M =U Usy.

13



We compute the mean of these singular values, which represents the average cosine:
k

L 1
similarity = Z ; cos(6;).
This average cosine represents the degree of overlap between the subspaces in which G and Gb lie,
providing a measure of gradient similarity.

B.6.1 Gradient Similarity Analysis

We quantify gradient similarity on a per—weight-matrix basis. To isolate the effect of timestep and
remove batch-induced stochasticity, we fix the input mini-batch and the sampled noise realisations
across all measurements. For each timestep group G;, we sample timesteps exclusively from G, run
a single forward/backward pass (without updating parameters), and record gradients for every weight
matrix.

We measure gradient similarity using the method explained in Section[B.6] comparing the subspaces
that explain each matrix’s 95% of energy. We compute the similarity for each layer’s gradient matrix
and average across layers to obtain a model-level similarity. The results are reported in Figure [0

From Figure[9] we observe three consistent trends:

1. Temporal locality. Neighbouring timestep groups exhibit higher gradient similarity than
temporally distant groups, indicating that nearby denoising tasks induce more aligned update
directions.

2. Progressive specialisation. As training progresses, inter-group similarity systematically
decreases, suggesting that groups specialise and their update subspaces become more
distinct.

3. Asymmetry across denoising tasks. High-timestep groups display stronger mutual align-
ment than low-timestep groups; the latter exhibit less aligned gradient subspaces, consistent
with their higher intrinsic difficulty and variability.

These observations motivate a nested-rank schedule—allocating more capacity where subspaces
diverge—and inform our curriculum and sampling designs to mitigate interference across timestep
regimes.

C Method Detail

In this section, we explain the details of our rank schedule, model Flops and parameter count for each
low rank preset, and curriculum learning design.

C.1 NA-LR Rank Scheduler

Our rank scheduler has two components: (1) a minimum activated proportion pmin € (0, 1], which
specifies the fraction of the minimum rank used at the highest timesteps (i.e., the easiest denoising
task), and (2) a decreasing schedule f(t) €0, 1] that controls how the active-rank proportion decays
from 1 (low timesteps) down to ppin (high timesteps). Let 7.« denote the maximum rank of a
low-rank layer and T the total number of timesteps. Defining 7min = [Pmin Tmax |, the active rank at
timestep ¢ is

(b(t) = Tmin + ’V(Tmax - rmin) f(t)—‘; f(t) € [Oa 1]7 (7)

C.1.1 Ablation on p,;,

We ablate pin € {0.3, 0.4, 0.5, 0.6} and track the training loss on the highest-timestep group to
detect underfitting caused by overly aggressive rank reduction, results shown in Figure [I0] For
Pmin > 0.4, learning trajectories closely match the non—noise-adaptive baseline; below 0.4 we found
a persistent performance gap. Because larger py,;, increases inference cost, we set pyin, = 0.4 for all
experiments.
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Figure 9: Subspace overlap of gradients between timestep groups over the course of training. Higher
values indicate greater alignment of the top-k gradient subspaces.

C.1.2 Decreasing schedules

We tested two decreasing schedule linear schedule, which is inspired by the trend of the effective
rank of weight matrices of the model trained with different timestep groups shown in Section[B.3] we
also add logistic schedule, which is inspired by the trend of the effective rank of gradient of different

timestep groups shown in Section[B-2}

1. Linear schedule ;

fin(t) = 1 - T
which decays the active-rank proportion linearly with timestep.

2. Logistic schedule

) = o 4 -m)). o=

where m controls the midpoint and % the sharpness of the curve.
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Figure 11: Linear vs. logistic decreasing schedules on FID.

We ablated study the two proposed rank schedule using the setting in Section[B-I] For comparability,
we set m = 0.5 and k = 8 so that the expected active rank under fi,; matches that of f;, while
mirroring the gradient-rank trend observed in Section [B:2} As shown in Figure [TT] the logistic
schedule consistently yields lower FID than the linear schedule; we therefore adopt the logistic

schedule in all experiments.

C.1.3 Max-rank warm start

Because f(t) approaches 1 only for very low timesteps, the top rank slices could otherwise be
activated too infrequently. We therefore apply a short warm start with ratio y = 0.1: for ¢ < |[yT'|,
we set D(t) = rmay in (7). This prevents underfitting of the highest slices without affecting overall

compute.
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C.2 Low rank Model preset information

Here we report per-image inference cost (GFLOPs over 100 DDIM steps) and parameter counts for
full-rank DiT-S/2 and our low-rank variants on 3 x 32 x 32 output size, shown in Table@

Table 2: CIFAR-10 (32 x 32). Per-image inference GFLOPs (100 DDIM steps) and parameter counts
for DiT-S/2, fixed low-rank variants, and noise-adaptive low-rank variants under ISO-Parameter
(Param-matched) and ISO-Compute (FLOPs-matched).

Method (CIFAR-10, 32 x 32) GFLOPs  Params (M)
DiT-S/2 551.674 39.80
DiT-S/2 low rank 75% 421.256 31.34
DiT-S/2 adaptive low rank 75% (ISO-Compute)  421.159 37.60
DiT-S/2 adaptive low rank 75% (ISO-Param) 343.214 31.34
DiT-S/2 low rank 50% 291.060 22.94

DiT-S/2 adaptive low rank 50% (ISO-Compute)  290.754 27.12
DiT-S/2 adaptive low rank 50% (ISO-Param) 238.572 22.94

DiT-S/2 low rank 25% 160.865 14.53
DiT-S/2 adaptive low rank 25% (ISO-Compute)  160.974 16.69
DiT-S/2 adaptive low rank 25% (ISO-Param) 134.335 14.53

C.3 Curriculum Learning Design

In this section, we introduce a curriculum learning strategy that, during a dedicated curriculum
phase, restricts the range of timesteps from which each batch is sampled. By confining batches
to progressively shifting subranges and activating only the corresponding rank slices, we realise
training-time slicing and reduce training FLOPs. After the curriculum phase, sampling gradually
shift to uniform over the entire timestep range to avoid bias and preserve final performance.

C.3.1 Initial Curriculum Learning Design

Our initial curriculum design and scheduling therefore largely follow Kim et al. [12].

We cluster timesteps into ten groups Go, G1, . .., Gg using the log-SNR, which aligns grouping with
the underlying noise-level progression. The resulting clusters are shown in Figure[T2]

Timestep Clustering via Dynamic Programming
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Figure 12: Timestep clustering used for curriculum learning (log-SNR based).

Training starts with the highest-timestep group G (easiest task). After convergence on the current
task, we add the next group Gg and train jointly on Gy U G until convergence, and so on, until
the final group Gj is included. Thereafter the model trains on the full range Ufigl G, matching
standard diffusion training. Within each curriculum stage, timesteps are sampled uniformly from the
union of the groups included in that stage.
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We schedule curriculum transitions by monitoring the per-batch training loss. If the loss does
not improve for 7 iterations, we introduce the next timestep group. Kim et al. [12] report that
7 € [100, 800] yields similar final performance with a sweet spot around 7 = 200. Accordingly, we
adopt 7 = 200 in all experiments.

C.3.2 Improvement Over Curriculum Learning Design

Kim et al. [[12] use a relatively short curriculum (e.g., 7k—12k steps within 2M total steps). In our
DiT-S/2 + CIFAR-10 setting, the curriculum phase ends around 60k steps, with total training lasting
800k steps. Because a longer curriculum period yields greater compute savings in our framework, we
deliberately extend the curriculum via stricter convergence monitoring using an exponential moving
average (EMA) of the loss:

EMAt = O[Lt + (1 - Oé) EMAt_l,
where L, is the current mini-batch loss, EMA,_; is the previous EMA, and a = NLH sets the
effective window size N. We declare convergence for a stage if the EMA does not improve for 200
iterations.

We ablate « € {0.1,0.05,0.01,0.005}. The number of iterations required for curriculum completion
under each « is shown in Figure@ For o < 0.05, the curriculum reliably extends to ~ 320k steps in
our setting; we therefore use o = 0.05 by default.

Ablation Study on EMA Smoothing Factor

Curriculum Index

T T T T T
0 10000 20000 30000 40000 50000 60000
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Figure 13: Effect of the EMA smoothing factor o on curriculum learning phase length (iterations
until all groups are introduced).

C.3.3 Mitigating Negative Transfer Between Curriculum Stages

With the EMA-based schedule, we initially observed that the curriculum-trained model underper-
formed the non-curriculum baseline in terms of FID score after the curriculum phase, which is
contrary to [12]. Inspecting per-group losses revealed negative transfer: upon introducing a new
group, losses for already-included groups ceased improving or even worsened, which is shown in

Figure [T4]
We hypothesise this arises from reduced sampling probability for the already-included groups. As

the curriculum expands and sampling remains uniform over the current range, each existing group’s
probability decreases (Figure [I5a), leading to gradual forgetting.

To counteract this, we propose progressive uniform sampling. After introducing a new group, each
previously introduced group retains the same per-sample probability it would have under full-range
uniform sampling; the remaining budget in each mini-batch is allocated to the newly introduced group.
Thus, the occurrence probability of earlier groups remains constant throughout training, yielding
unbiased gradients for them. As more groups are added, the scheme smoothly converges to true
uniform sampling over the full range, easing the transition out of the curriculum phase.
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Timestep Group Training Loss Comparison
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Figure 14: Illustration of negative transfer: after adding a new group, previously introduced groups
exhibit increased losses.
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Figure 15: Side-by-side comparison of curriculum learning sampling strategies

With progressive uniform sampling, losses for previously introduced groups continue to decrease
after new groups are added, resolving the negative-transfer issue, as shown in Figure[T6

C.3.4 Mitigating the Late-Start Problem

After addressing negative transfer, we observed that low-timestep groups (introduced later) lagged
behind the non-curriculum baseline, exhibiting a persistent loss gap (Figure[T7). We attribute this to
two factors: (1) when late groups are introduced, the base learning rate has already decayed due to
the learning rate schedule; and (2) newly activated parameters have accumulated near-zero gradients
for a long period, so the first and second moments in Adam induce an effectively small learning rate
upon activation.

We remedy this with a learning-rate boost and optimiser reset at each group introduction: we reset
the base learning rate to the initial value, reduced by 2% per already-introduced group, and clear the
optimiser state. To smooth the abrupt change in dynamics (objective, learning rate, and optimiser
moments), we apply a short warm-up of 20% of the initial warm-up length.

As shown in Figure[T7} after applying the learning-rate boost and optimiser reset, the late-introduced
timestep groups achieve performance comparable to the non-curriculum baseline.
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Timestep Group Training Loss Comparison
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Figure 16: Progressive uniform sampling mitigates negative transfer: previously introduced groups

continue improving after new groups are added.
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Figure 17: Late-start groups (low timesteps) initially underperform the non-curriculum baseline.
Applying a learning-rate boost and optimiser reset closes the gap.

D Experiment Details

In this section we explain the detail setup for all the experiments in this paper.

D.1 Training Hyperparameters

We train with the AdamW optimiser [45]] using a base learning rate of 1 x 10~* with a warmup of
3000 steps and no weight decay. The global batch size is 128. During training we apply random
horizontal flips as data augmentation.
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We use a DDPM cosine noise schedule [14] with 7" = 1000 timesteps, during inference time we
utilise DDIM scheduler with T" = 100. For classifier-free guidance, the guidance scale is set to 2 at
sampling time, and an unconditional conditioning token is used with probability 0.1 during training.
We maintain an exponential moving average (EMA) of model weights with decay 0.9999, updated
every training step. These settings follow common practice in the diffusion literature.

For the noise-adaptive low-rank scheduler, the base activated rank proportion is set to 0.4, with a
logistic schedule (midpoint 0.5, steepness k& = 8). For curriculum learning, we use 10 timestep
clusters and an EMA monitor with decay 0.95. The rationale for these hyperparameters is detailed in
Section[C

D.2 Experimental Environment

All experiments are carried out on a machine with Ubuntu 24.04 LTS and uses an AMD Ryzen 7
5700X (8 cores), 16 GB RAM, and an NVIDIA A40 GPU. We implement all experiments using the
open-source PyTorch and diffusers libraries, model FLOPs is measured by fvcore [46] library,
and accompanying scripts is provided for reproducibility.

D.3 Full Results on CIFAR-10 and CelebA dataset

Here we present the full results across all low-rank presets, including both the static low-rank baselines
and our noise-adaptive low-rank variants, both the results on the CelebA dataset and the CIFAR-10
dataset are shown.

Table 3: Inference FLOPs, model parameter size, and generation quality (FID, Precision, Recall) for
baseline, fixed low-rank variants, and noise-adaptive low-rank variants of DiT-S/2 model on CIFAR
10 dataset. The Inference FLOPs shown is the FLOPs require to carry out 100 DDIM steps.

Method (CIFAR10 32%32) GFLOPs Params (M) FID ] Precision? Recall T
Full Rank 551.674 39.80 322 0.82 0.79
Low rank 75% 421.256 31.34 5.33 0.76 0.67
Adaptive low rank 75% (ISO-Compute)  421.159 37.60 3.92 0.80 0.73
Adaptive low rank 75% (ISO-Param) 343.214 31.34 5.53 0.75 0.66
Low rank 50% 291.060 22.94 7.36 0.70 0.60
Adaptive low rank 50% (ISO-Compute)  290.754 27.12 5.73 0.74 0.64
Adaptive low rank 50% (ISO-Param) 238.572 22.94 741 0.69 0.61
Low rank 25% 160.865 14.53 11.78 0.61 0.51
Adaptive low rank 25% (ISO-Compute)  160.974 16.69 9.38 0.66 0.55
Adaptive low rank 25% (ISO-Param) 134.335 14.53 11.64 0.62 0.53

Table 4: Inference FLOPs, model parameter size, and generation quality (FID, Precision, Recall) for
baseline, fixed low-rank variants, and noise-adaptive low-rank variants of DiT-S/2 model on CelebA
64x64 dataset. The Inference FLOPs shown is the FLOPs required to carry out 100 DDIM steps.

Method (CelebA 64%64) GFLOPs Params (M) FID | Precision? Recall T
Full Rank 2202.420 39.80 2.35 0.82 0.75
Low rank 75% 1681.805 31.34 3.79 0.75 0.67
Adaptive low rank 75% (ISO-Compute) 1681.451 37.60 3.09 0.79 0.71
Adaptive low rank 75% (ISO-Param) 1269.420 31.34 3.97 0.76 0.68
Low rank 50% 1162.066 22.94 5.59 0.68 0.59
Adaptive low rank 50% (ISO-Compute) 1161.756 27.12 4.61 0.71 0.63
Adaptive low rank 50% (ISO-Param) 887.041 22.94 5.65 0.68 0.58
Low rank 25% 642.328 14.53 8.11 0.59 0.49
Adaptive low rank 25% (ISO-Compute) 642.108 16.69 7.17 0.63 0.53
Adaptive low rank 25% (ISO-Param) 503.332 14.53 8.03 0.60 0.50
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E Additional Experiments

In this section, we present additional experiments that further characterise our noise-adaptive low-rank
parameterisation: (i) an ablation of the curriculum design, (ii) a quality—efficiency comparison against
post-hoc low-rank compression, and (iii) a scalability study on DiT-B/2 with ImageNet-128.

E.1 Ablation Study on Curriculum Learning

We ablate the impact of curriculum learning on final performance on CIFAR-10 dataset. Our goal is
to test whether deliberately extending the curriculum phase harms generation quality. We therefore
train the three low-rank presets with the noise-adaptive parameterisation with and without curriculum
learning for 800k steps, and compare FID, inference GFLOPs, and parameter counts. Results are
shown in Table

Table 5: Ablation of curriculum learning on CIFAR-10. NC refers no curriculum.

Method FID | Inference GFLOPs | Parameters (M) |
Low-rank adaptive 75% 5.53 421.256 31.34
Low-rank adaptive 75%(NC)  5.58 421.159 37.60
Low-rank adaptive 50% 7.41 291.060 22.94
Low-rank adaptive 50%(NC)  7.35 290.754 27.12
Low-rank adaptive 25% 11.64 160.865 14.53
Low-rank adaptive 25%(NC) 11.71 160.974 16.69

The results indicate that curriculum learning does not degrade final image quality: models trained
with curriculum achieve comparable FID to their no-curriculum counterparts. In fact, for the 75% and
25% presets, the curriculum-trained models slightly outperform the no-curriculum versions, while
also providing training-compute savings as quantified above.

E.2 Comparing with Post-hoc Compression Method

The results above show that our noise adaptive low rank parameterisation improves the effi-
ciency—quality trade-off; when combined with curriculum learning it further reduces training FLOPs
without sacrificing performance. To position our approach within the broader landscape of low-rank
diffusion, we compare against the common pretrain, compress then fine-tune pipeline reviewed in
Section[A] Concretely, we evaluate the ELR-diffusion pipeline of He et al. [[7], which differs from
standard compression in that the fine-tuning stage performs knowledge distillation (KD) from the
full-rank teacher rather than directly fine-tuning on data.

We train a full-rank DiT-S/2 on CelebA for 800k steps, apply low-rank compression, and then KD
fine-tune the low-rank student for an additional 200k steps. We compare this post-hoc method against
our adaptive low-rank 50% presets under two fair settings: (i) [ISO-Compute (match inference
GFLOPs) and (ii) ISO-Parameter (match parameter count). Metrics are reported for 100 DDIM
sampling steps.

The results are shown in Table[] At matched compute (ELR compression 50% vs. adaptive 50% ISO-
Compute), the compression method attains a lower FID (3.89 vs. 4.61), a 0.72 absolute (approximately
15.6%) improvement, with slightly higher precision (0.72 vs. 0.71) and notably higher recall (0.70
vs. 0.63). This indicates that the FID advantage is driven primarily by improved coverage (diversity).
At matched size (ELR compression 50% vs. adaptive 50% ISO-Parameter), the compression method
again yields a lower FID (3.89 vs. 5.65, 31.2% relative), but does so at substantially higher inference
compute (1162 GFLOPs vs. 887 GFLOPs).

The advantage of post-hoc compression in FID comes with a significant higher training cost because
it requires full-rank pretraining followed by low-rank KD fine-tuning. Table [/| shows that ELR
compression consumes 7.097 * 10'® FLOPs, which is 6.08% higher than training a full-rank model
end-to-end (6.696 * 10'® PFLOPs), 90.62% higher than our adaptive 50% ISO-Compute preset
(3.723 * 10'8 FLOPs), and about 128.20% higher than our adaptive 50% ISO-Parameter preset
(3.110 * 10'® FLOPs). In other words, it doubles the training compute compared with our adaptive
method to achieve a 0.72 absolute FID improvement at matched inference compute.
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Table 6: Comparative Results in FID, precision and recall between Adaptive low rank method with
post-hoc low rank compression method.

Method Inference GFLOPs Parameters (M) FID Precision Recall
Full Rank 2202.42 39.8 2.35 0.82 0.75
Low rank compression 50% 1162.066 22.94 3.89 0.72  0.70
Low rank adaptive 50% (ISO-Compute) 1161.756 27.12 4.61 0.71 0.63
Low rank adaptive 50% (ISO-Param) 887.041 22.94 5.65 0.68 0.58

Table 7: Total Training cost comparison between full rank and low rank methods.

Method Total Training FLOPSs (10*® )
Full Rank 6.696
Low rank compression 50% 7.097
Low rank adaptive 50% (ISO-Compute) 3.723
Low rank adaptive 50% (ISO-Param) 3.110

Post-hoc compression with KD can achieves lower FID at the same inference copmutational cost,
the lower FID is largely caused by improving recall (sample diversity). However, this benefit is
offset by substantially higher training cost. In settings where training compute is the bottleneck, or
where one seeks a favourable end-to-end efficiency profile, our noise adaptive low rank approach
with curriculum learning offers a more compute efficient alternative, while retaining competitive
precision/recall and enabling further reductions under ISO-Parameter configurations.

E.3 Scalability Analysis
To assess scalability, we train DiT-B/2 on ImageNet at 128 x 128 resolution [47]]. Following the

original DiT setup [4]], we use the Stable Diffusion VAE as the image autoencoder. We compare the
full-rank DiT-B/2 against a noise-adaptive low-rank DiT-B/2 with a 50% ISO-Compute preset.

Table 8: Model comparison on FID, Recall, and Precision on ImageNet 128*128 dataset.

Model Parameter (M) Inference GFLOPs FID Recall Precision
DiT-B/2 Full Rank 147.42 2203.974 30.13 0.53 0.33
DiT-B/2 Adaptive Low Rank 50% ISO Compute 105.00 1162.366 35.59 047 0.25

As shown in Table [§] the adaptive low-rank model reduces inference compute by approximately
47.3% (2203.974 to 1162.366 GFLOPs) and the parameter count by about 28.8% (147.42M to
105.00M), while incurring an 17.1% increase in FID (30.13 to 35.59). Recall and precision also
decrease, reflecting the greater difficulty of preserving coverage and fidelity under aggressive rank
reduction at this scale. Overall, these results indicate that noise-adaptive low-rank parameterisation
scales to larger backbones and datasets, delivering substantial compute savings with competitive
generation quality.

F Limitation and Future Works

The main limitation of our work is the method currently relies on a manually tuned rank schedule and
exhibits sensitivity in recall performance under aggressive compression Future work could investigate
learnable rank schedulers that adapt online under an explicit FLOPs budget, potentially framed as
constrained optimisation or reinforcement learning. Additional directions include joint training with
distillation to retain diversity under aggressive rank reduction and evaluations on higher-resolution,
text-to-image, or video diffusion could further clarify the scalability of our method.

G Visual Comparison of the Generated Image

Here we present the non-curated generated images for across different dataset and low rank present.
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Figure 19: CIFAR-10 image generated by low rank DiT-S/2 adaptive low rank 50% ISO compute
preset.
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Figure 21: CelebA image generated by low rank DiT-S/2 adaptive low rank 50% ISO compute preset.
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A = 5

Figure 23: ImageNet image generated by low rank DiT-B/2 adaptive low rank 50% ISO compute
preset.
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